已知數(shù)列{an}滿足a1=2,an=nan-1(n≥2),則a5=( 。
A、240B、120
C、60D、30
考點(diǎn):數(shù)列遞推式
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:由遞推式an=nan-1(n≥2)可得
an
an-1
=n
,利用“累乘求積”可得an=
an
an-1
×
an-1
an-2
×
…×
a2
a1
×a1
=2•n!即可得出.
解答: 解:∵an=nan-1(n≥2),
an
an-1
=n
,
an=
an
an-1
×
an-1
an-2
×
…×
a2
a1
×a1
=n×(n-1)×…×2×2=2•n!
∴a5=2×5!=240.
故選:A.
點(diǎn)評(píng):本題考查了數(shù)列遞推式、“累乘求積”求數(shù)列的通項(xiàng)公式,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡
1-sin260°
的結(jié)果是( 。
A、cos60°
B、-cos60°
C、±cos60°
D、±|cos60°|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α=2,則點(diǎn)P(sinα,tanα)所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從高三年級(jí)隨機(jī)抽取100名學(xué)生,將他們的某次考試數(shù)學(xué)成績繪制成頻率分布直方圖.由圖中數(shù)據(jù)可知成績?cè)赱130,140)內(nèi)的學(xué)生人數(shù)為( 。
A、20B、25C、30D、35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log 
1
2
(a-2x)-(2+x)有零點(diǎn),則a的取值范圍為( 。
A、(1,+∞)
B、[1,+∞)
C、(-∞,1]
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某觀察站B在城A的南偏西20°的方向,由A出發(fā)的一條公路的走向是南偏東25°,現(xiàn)在B處測(cè)得此公路上距B處30km的C處有一人正沿此公路騎車以40km/h的速度向A城駛?cè),行駛?5分鐘后到達(dá)D處,此時(shí)測(cè)得B與D之間的距離為8
10
km,問這人還需要多長時(shí)間才能到達(dá)A城?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的幾何體中,四邊形BB1C1C是矩形,BB1⊥平面ABC,CA=CB,A1B1∥AB,AB=2A1B1,E,F(xiàn)分別是AB,AC1的中點(diǎn).
(Ⅰ)求證:EF∥平面BB1C1C;
(Ⅱ)求證:C1A1⊥平面ABB1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E為PC的中點(diǎn).
(1)求證:AP∥平面BDE;
(2)求證:BE⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,命題p:對(duì)任意x∈[-1,1],不等式2x-1≥m2-4m恒成立;命題q:存在 x∈[-1,1],使得ax≥m成立.
(Ⅰ)若p為真命題,求m的取值范圍.
(Ⅱ)當(dāng)a=2,若p∧q為假,p∨q為真,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案