【題目】已知,點是圓上一動點,動點滿足,點在直線上,且.

1)求點的軌跡的標準方程;

2)已知點在直線上,過點作曲線的兩條切線,切點分別為,記點到直線的距離分別為,求的最大值,并求出此時點的坐標.

【答案】1;(2,

【解析】

1)由題可得是線段的垂直平分線,所以可得,由橢圓的定義可知,點軌跡是以為焦點,以4為長軸長的橢圓,即可求得方程;

2)設,可知點處的切線的方程為,同理可得切線的方程為,故直線的方程為,表示出,;算出,求出其最大值即可.

解:(1)由,可知為線段的中點,

,所以是線段的垂直平分線,故.

因為點在直線上,所以.

由橢圓的定義可知,點軌跡是以為焦點,以4為長軸長的橢圓,即,

解得,

另當點坐標為時,重合,不符合題意,故的標準方程為.

2)設,所以曲線處的切線的方程為,又因為切線,所以.

同理可得,故直線的方程為.

所以.

因為直線的方程為,所以.

又因為在直線的兩側,

所以

,

所以,

,

,

,即時,有最大值

此時點的坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的左、右焦點分別為,,點A為橢圓C上異于左右頂點的任意一點,A關于原點O的對稱點為B,且

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)若A關于x軸的對稱點,設點,連接NA,直線NA與橢圓C相交于點E,直線x軸相交于點M,求點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的三棱錐中,是邊長為2的等邊三角形,的中位線,為線段的中點.

1)證明:.

2)若二面角為直二面角,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若,求的零點個數(shù);

2)若,,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,分別為線段的中點,為四棱錐的外接球的球心,點分別是直線上的動點,記直線所成角為,則當最小時,

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為。

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分形幾何學是數(shù)學家伯努瓦·曼得爾布羅在20世紀70年代創(chuàng)立的一門新的數(shù)學學科,它的創(chuàng)立為解決傳統(tǒng)科學眾多領域的難題提供了全新的思路.按照如圖甲所示的分形規(guī)律可得如圖乙所示的一個樹形圖:記圖乙中第行黑圈的個數(shù)為,則(1_______;(2______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著我國經(jīng)濟的發(fā)展,居民收入逐年增長.某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:

年份

2014

2015

2016

2017

2018

年份代號

1

2

3

4

5

人均純收入

5

4

7

8

10

1)求關于的線性回歸方程;

2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預測2019年該地區(qū)農(nóng)村居民家庭人均純收入為多少?

附:回歸直線的斜率和截距的最小二乘估計公式分別為,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PDM(異于點D),交PCN(異于點C.

1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結論);若不是,請說明理由;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案