【題目】在數(shù)列中,,當(dāng)n≥2時(shí),其前n項(xiàng)和滿足,設(shè)數(shù)列的前n項(xiàng)和為,則滿足≥5的最小正整數(shù)n是( )
A.10B.9C.8D.7
【答案】D
【解析】
在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和為Sn滿足Sn2=an(Sn﹣1),即Sn2=(Sn﹣Sn﹣1)(Sn﹣1),化為:1.利用等差數(shù)列的通項(xiàng)公式可得:Sn.可得bn=log2,利用對(duì)數(shù)的運(yùn)算性質(zhì)可得:數(shù)列{bn}的前n項(xiàng)和為Tn.由5,解得(n+1)(n+2)≥26,解得n.
在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),其前n項(xiàng)和為Sn滿足Sn2=an(Sn﹣1),
∴Sn2=(Sn﹣Sn﹣1)(Sn﹣1),化為:1.
∴數(shù)列是等差數(shù)列,首項(xiàng)為1,公差為1.
∴1+(n﹣1)=n,解得:Sn.
∴bn=log2,
數(shù)列{bn}的前n項(xiàng)和為Tn
.
由Tn≥6,即5,解得(n+1)(n+2)≥26,
令f(x)=x2+3x﹣62
64,
可得:f(x)在[1,+∞)上單調(diào)遞增.
而f(6)=﹣8<0,f(7)=8>0,
若x∈N*,則n≥7.
則滿足Tn≥5的最小正整數(shù)n是7.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心為,半徑為1的圓.
(1)求曲線, 的直角坐標(biāo)方程;
(2)設(shè)為曲線上的點(diǎn), 為曲線上的點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓:,點(diǎn)是圓內(nèi)一個(gè)定點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn).當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)過點(diǎn)的直線與曲線相交于兩點(diǎn)(點(diǎn)在兩點(diǎn)之間).是否存在直線使得?若存在,求直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,以相同的長度單位建立極坐標(biāo)系.己知直線的直角坐標(biāo)方程為,曲線C的極坐標(biāo)方程為.
(1)設(shè)t為參數(shù),若,求直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)已知:直線與曲線C交于A,B兩點(diǎn),設(shè),且,,依次成等比數(shù)列,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若曲線在處切線的斜率為,求此切線方程;
(2)若有兩個(gè)極值點(diǎn),求的取值范圍,并證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的左、右焦點(diǎn)分別為,,離心率為,點(diǎn)在橢圓C上,且⊥,△F1MF2的面積為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知直線l與橢圓C交于A,B兩點(diǎn),,若直線l始終與圓相切,求半徑r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn-n=2(an-2),(n∈N*)
(1)證明:數(shù)列{an-1}為等比數(shù)列.
(2)若bn=anlog2(an-1),數(shù)列{bn}的前項(xiàng)和為Tn,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某地區(qū)2009年至2018年芯片產(chǎn)業(yè)投資額 (單位:億元)的散點(diǎn)圖,為了預(yù)測(cè)該地區(qū)2019年的芯片產(chǎn)業(yè)投資額,建立了與時(shí)間變量的四個(gè)線性回歸模型.根據(jù)2009年至2018年的數(shù)據(jù)建立模型①;根據(jù)2010年至2017年的數(shù)據(jù)建立模型②;根據(jù)2011年至2016年的數(shù)據(jù)建立模型③;根據(jù)2014年至2018年的數(shù)據(jù)建立模型④.則預(yù)測(cè)值更可靠的模型是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),等腰梯形,,,,,分別是的兩個(gè)三等分點(diǎn),若把等腰梯形沿虛線、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn), 如圖(2).
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com