【題目】已知圓M:(x+1)2+y2=1,圓N:(x﹣1)2+y2=9,動圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點,當(dāng)圓P的半徑最長時,求|AB|.
【答案】
(1)解:由圓M:(x+1)2+y2=1,可知圓心M(﹣1,0);圓N:(x﹣1)2+y2=9,圓心N(1,0),半徑3.
設(shè)動圓的半徑為R,
∵動圓P與圓M外切并與圓N內(nèi)切,∴|PM|+|PN|=R+1+(3﹣R)=4,
而|NM|=2,由橢圓的定義可知:動點P的軌跡是以M,N為焦點,4為長軸長的橢圓,
∴a=2,c=1,b2=a2﹣c2=3.
∴曲線C的方程為 (x≠﹣2).
(2)解:設(shè)曲線C上任意一點P(x,y),
由于|PM|﹣|PN|=2R﹣2≤3﹣1=2,所以R≤2,當(dāng)且僅當(dāng)⊙P的圓心為(2,0)R=2時,其半徑最大,其方程為(x﹣2)2+y2=4.
①l的傾斜角為90°,則l與y軸重合,可得|AB|=2 .
②若l的傾斜角不為90°,由于⊙M的半徑1≠R,可知l與x軸不平行,
設(shè)l與x軸的交點為Q,則 ,可得Q(﹣4,0),所以可設(shè)l:y=k(x+4),
由l于M相切可得: ,解得 .
當(dāng) 時,聯(lián)立 ,得到7x2+8x﹣8=0.
∴ , .
∴|AB|= = =
由于對稱性可知:當(dāng) 時,也有|AB|= .
綜上可知:|AB|=2 或 .
【解析】(1)設(shè)動圓的半徑為R,由已知動圓P與圓M外切并與圓N內(nèi)切,可得|PM|+|PN|=R+1+(3﹣R)=4,而|NM|=2,由橢圓的定義可知:動點P的軌跡是以M,N為焦點,4為長軸長的橢圓,求出即可;(2)設(shè)曲線C上任意一點P(x,y),由于|PM|﹣|PN|=2R﹣2≤4﹣2=2,所以R≤2,當(dāng)且僅當(dāng)⊙P的圓心為(2,0)R=2時,其半徑最大,其方程為(x﹣2)2+y2=4.分①l的傾斜角為90°,此時l與y軸重合,可得|AB|.②若l的傾斜角不為90°,由于⊙M的半徑1≠R,可知l與x軸不平行,設(shè)l與x軸的交點為Q,根據(jù) ,可得Q(﹣4,0),所以可設(shè)l:y=k(x+4),與橢圓的方程聯(lián)立,得到根與系數(shù)的關(guān)系利用弦長公式即可得出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1的方程為x2+(y+1)2=4,圓C2的圓心坐標(biāo)為(2,1).
(1)若圓C1與圓C2相交于A,B兩點,且|AB|=,求點C1到直線AB的距離;
(2)若圓C1與圓C2相內(nèi)切,求圓C2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,點的坐標(biāo)為.
(1)求過點且與圓相切的直線方程;
(2)過點任作一條直線與圓交于不同兩點,,且圓交軸正半軸于點,求證:直線與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形所在的平面與長方形所在的平面垂直,.點是邊的中點,點分別在線段,上,且.
(1)證明:;
(2)求二面角的正切值;
(3)求直線與直線PG所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若不等式的解集為,求實數(shù)的值;
(2)若不等式對一切實數(shù)恒成立,求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在區(qū)間上的值域為,則稱區(qū)間為函數(shù)的一個“倒值區(qū)間”.定義在上的奇函數(shù),當(dāng)時,
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在上的“倒值區(qū)間”;
(Ⅲ)記函數(shù)在整個定義域內(nèi)的“倒值區(qū)間”為,設(shè),則是否存在實數(shù),使得函數(shù)的圖像與函數(shù)的圖像有兩個不同的交點?若存在,求出的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙的半徑為,圓心的坐標(biāo)為,其中.,為該圓的兩條切線,為坐標(biāo)原點,,為切點,在第一象限,在第四象限.
()若時,求切線,的斜率.
()若時,求外接圓的標(biāo)準(zhǔn)方程.
()當(dāng)點在軸上運動時,將表示成的函數(shù),并求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解高中生的藝術(shù)素養(yǎng),從學(xué)校隨機選取男,女同學(xué)各50人進行研究,對這100名學(xué)生在音樂、美術(shù)、戲劇、舞蹈等多個藝術(shù)項目進行多方位的素質(zhì)測評,并把調(diào)查結(jié)果轉(zhuǎn)化為個人的素養(yǎng)指標(biāo)和,制成下圖,其中“*”表示男同學(xué),“+”表示女同學(xué).
若,則認(rèn)定該同學(xué)為“初級水平”,若,則認(rèn)定該同學(xué)為“中級水平”,若,則認(rèn)定該同學(xué)為“高級水平”;若,則認(rèn)定該同學(xué)為“具備一定藝術(shù)發(fā)展?jié)撡|(zhì)”,否則為“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)”.
(I)從50名女同學(xué)的中隨機選出一名,求該同學(xué)為“初級水平”的概率;
(Ⅱ)從男同學(xué)所有“不具備明顯藝術(shù)發(fā)展?jié)撡|(zhì)的中級或高級水平”中任選2名,求選出的2名均為“高級水平”的概率;
(Ⅲ)試比較這100名同學(xué)中,男、女生指標(biāo)的方差的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)直線l過點(2,3)且與直線2x+y+1=0垂直,l與x軸,y軸分別交于A、B兩點,求|AB|;
(2)求過點A(4,-1)且在x軸和y軸上的截距相等的直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com