【題目】已知圓C1的方程為x2+(y+1)2=4,圓C2的圓心坐標(biāo)為(2,1).

(1)若圓C1與圓C2相交于A,B兩點,且|AB|=,求點C1到直線AB的距離;

(2)若圓C1與圓C2相內(nèi)切,求圓C2的方程.

【答案】(1).(2)(x-2)2+(y-1)2=12+8

【解析】

(1) 知直線C1C2垂直平分公共弦AB.設(shè)直線ABC1C2的交點為P,再解直角三角形得到

C1到直線AB的距離.(2) 由兩圓相內(nèi)切得|C1C2|=|r1r2|求出r2=2+2,即得圓

C2的方程.

(1)由題設(shè),易知直線C1C2垂直平分公共弦AB.設(shè)直線ABC1C2的交點為P,

則在Rt△APC1中,

∵|AC1|=2,|AP|=|AB|=,

∴點C1到直線AB的距離為|C1P|=.

(2)由題設(shè)得,圓C1的圓心為C1(0,-1),半徑為r1=2.

設(shè)圓C2的半徑為r2,則由兩圓相內(nèi)切得|C1C2|=|r1r2|=|2-r2|,

解得r2=2+2r2=2-2 (舍去).

故所求圓C2的方程為(x-2)2+(y-1)2=12+8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足: ,且.

1)求證:數(shù)列是等比數(shù)列;

2)設(shè)是數(shù)列的前項和,若對任意都成立.試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體中,,

(1)證明:

(2)若,,四面體的體積為2,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的圖象在點處的切線方程;

(2)若函數(shù)的圖象與軸有且僅有一個交點,求實數(shù)的值;

(3)在(2)的條件下,對任意的,均有成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (, 為自然對數(shù)的底數(shù)).

(Ⅰ)求函數(shù)的極值;

(Ⅱ)當(dāng)時,若直線與曲線沒有公共點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組共有12位同學(xué),下圖是他們某次數(shù)學(xué)競賽成績(滿分100分)的莖葉圖,

其中有一個數(shù)字模糊不清,圖中用表示,規(guī)定成績不低于80分為優(yōu)秀.

(1)已知該12位同學(xué)競賽成績的中位數(shù)為78,求圖中的值;

(2)從該12位同學(xué)中隨機選3位同學(xué),進行競賽試卷分析,

設(shè)其中成績優(yōu)秀的人數(shù)為,求的分布列及數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C: 經(jīng)過點P(1, ),離心率e= ,直線l的方程為x=4.

(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點F的任一弦(不經(jīng)過點P),設(shè)直線AB與直線l相交于點M,記PA,PB,PM的斜率分別為k1 , k2 , k3 . 問:是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,底面為直角三角形,,,點是線段上一動點,則的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M:(x+1)2+y2=1,圓N:(x﹣1)2+y2=9,動圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線C.
(1)求C的方程;
(2)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點,當(dāng)圓P的半徑最長時,求|AB|.

查看答案和解析>>

同步練習(xí)冊答案