已知tanα=
2
,求下列各式的值:
(1)
cosα+sinα
cosα-sinα

(2)2sin2α-sinαcosα+cos2α
考點:同角三角函數(shù)基本關系的運用
專題:三角函數(shù)的求值
分析:(1)原式分子分母除以cosα,利用同角三角函數(shù)間基本關系化簡,將tanα的值代入計算即可求出值;
(2)原式分母看做“1”,利用同角三角函數(shù)間基本關系變形,將tanα的值代入計算即可求出值.
解答: 解:(1)∵tanα=
2
,
∴原式=
1+tanα
1-tanα
=
1+
2
1-
2
=-3-2
2
;
(2)∵tanα=
2
,
∴原式=
2sin2α-sinαcosα+cos2α
sin2α+cos2α
=
2tan2α-tanα+1
tan2α+1
=
4-
2
+1
2+1
=
5-
2
3
點評:此題考查了同角三角函數(shù)基本關系的運用,熟練掌握基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=ax3+bx2-2x+c在x=-2時有極大值6,在x=1時有極小值,
(1)求a,b,c的值;
(2)求f(x)在[-3,2]區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},若B⊆A,求滿足條件的實數(shù)a的值所組成的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(m+1)-1<(3-2m)-1,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=-2asinx+a+b的值域為[-5,4],
(1)求f(x)表達式;
(2)求出f(x)取最大值時對應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率與等軸雙曲線的離心率互為倒數(shù)關系,直線l:x-y+
2
=0與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設兩直線的斜率分別為k1,k2,且k1+k2=4,求證:直線AB過定點;
(Ⅲ)過點P(0,2)的直線l與橢圓交于不同的兩點D、E,當△ODE面積最大時,求|DE|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
x2+bx+c,(-4≤x<0)
-x+3,(x≥0)
,若f(-4)=f(0),f(-2)=-1,
(1)求函數(shù)f(x)的解析式,
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)的定義域和值域.
(3)若方程f(x)=k有3個不同的實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

判斷函數(shù)f(x)=x3-2x2+5在區(qū)間[-2,2]上的單調性,并求其在區(qū)間[-2,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+lnx.
(1)求函數(shù)f(x)在[1,e]上的最大值和最小值;
(2)求證:當x∈(1,+∞)時,函數(shù)f(x)的圖象在g(x)=
2
3
x3+
1
2
x2的下方.

查看答案和解析>>

同步練習冊答案