【題目】關(guān)于下列命題:
①若一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上同一個數(shù)后,方差恒不變;
②滿足方程的值為函數(shù)的極值點;
③命題“p且q為真” 是命題“p或q為真”的必要不充分條件;
④若函數(shù)(且)的反函數(shù)的圖像過點,則的最小值為;
⑤點是曲線上一動點,則的最小值是。
其中正確的命題的序號是____________(注:把你認(rèn)為正確的命題的序號都填上)。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一(3)班有學(xué)生60人,為了了解學(xué)生對目前高考制度的看法,現(xiàn)要從中抽取一個容量為10的樣本,問此樣本若采用簡單隨機抽樣,將如何獲得?試設(shè)計抽樣方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在四棱錐中,面,,,,,,,為的中點。
(1)求證:面;
(2)線段上是否存在一點,滿足?若存在,試求出二面角的余弦值;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中,側(cè)棱底面,,,。
(Ⅰ)若為線段上一點,且,求證:平面;
(Ⅱ)若分別是線段的中點,設(shè)平面將三棱柱分割成左、右兩部分,記它們的體積分別為和,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某化工廠引進(jìn)一條先進(jìn)生產(chǎn)線生產(chǎn)某種化工產(chǎn)品, 其生產(chǎn)的總成本(萬元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式可以近似地表示為,已知此生產(chǎn)線年產(chǎn)量最大為噸.
(1)求年產(chǎn)量為多少噸時,生產(chǎn)每噸產(chǎn)品的平均成本最低,并求最低成本;
(2)若毎噸產(chǎn)品平均出廠價為萬元,那么當(dāng)年產(chǎn)量為多少噸時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對定義在區(qū)間上的函數(shù)和,如果對任意,都有成立,那么稱函數(shù)在區(qū)間D上可被替代,D稱為“替代區(qū)間”.給出以下命題:
①在區(qū)間上可被替代;
②可被替代的一個“替代區(qū)間”為;
③在區(qū)間可被替代,則;
④,則存在實數(shù),使得在區(qū)間上被替代;
其中真命題的有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中,是自然對數(shù)的底數(shù))。
(Ⅰ)若關(guān)于的方程有唯一實根,求的值;
(Ⅱ)若過原點作曲線的切線與直線垂直,證明:;
(Ⅲ)設(shè),當(dāng)時,恒成立,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】重慶某重點中學(xué)高一新生小王家在縣城A地,現(xiàn)在主城B地上學(xué)。周六小王的父母從早上8點從家出發(fā),駕車3小時到達(dá)主城B地,期間由于交通等原因,小王父母的車所走的路程(單位:km)與離家的時間(單位:h)的函數(shù)關(guān)系為。達(dá)到主城B地后,小王父母把車停在B地,在學(xué)校陪小王玩到16點,然后開車從B地以的速度沿原路返回。
(1)求這天小王父母的車所走路程(單位:km)與離家時間(單位:h)的函數(shù)解析式;
(2)在距離小王家60處有一加油站,求這天小王父母的車途經(jīng)加油站的時間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若的展開式中,第二、三、四項的二項式系數(shù)成等差數(shù)列.
(1)求的值;
(2)此展開式中是否有常數(shù)項,為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com