設(shè)a和b分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+|a-b|x+1=0實根的個數(shù)(重根按一個計).則ξ的數(shù)學期望是
 
考點:離散型隨機變量的期望與方差
專題:計算題,概率與統(tǒng)計
分析:ξ的可能取值為0,1,2,求出相應(yīng)的概率,可求ξ的數(shù)學期望.
解答: 解:ξ的可能取值為0,1,2,則
P(ξ=0)=P(|a-b|≤1)=
16
36
,P(ξ=1)=P(|a-b|=2)=
8
36
,P(ξ=2)=P(|a-b|>2)=
12
36
,
E(ξ)=
8+24
36
=
8
9

故答案為:
8
9
點評:本題考查離散型隨機變量的期望,考查學生的計算能力,正確求概率是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.
(Ⅰ)若點M、N分別是邊A1B1、BC的中點,求證:MN∥平面ACC1A1
(Ⅱ)證明:AB⊥A1C;
(Ⅲ)若AB=CB=2,A1C=
6
,求二面角B-AC-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點,對稱軸為坐標軸的橢圓C的一個焦點在拋物線y2=4
3
x的準線上,且橢圓C過點(1,
3
2
).
(Ⅰ)求橢圓C的方程;
(Ⅱ)點A為橢圓C的右頂點,過點B(1,0)作直線l與橢圓C相交于E,F(xiàn)兩點,直線AE,AF與直線x=3分別交于不同的兩點M,N,求
EM
FN
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,點P是不等式組 
x-2y+2≥0
x+y-1≥0
x≤2
所確定的平面區(qū)域內(nèi)的動點,Q是直線2x+y=0上的任意一點,O為坐標原點,則|
OP
+
OQ
|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在Rt△ABC中,CA=CB=2,M,N是斜邊AB上的兩個動點,且MN=
2
,則
CM
CN
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)的圖象過定點(3,2),則函數(shù)y=f(x+1)-1的圖象經(jīng)過定點
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平行四邊形ABCD中,AD=4,∠BAD=
π
3
,E為CD中點,若
AC
BE
=4,則AB的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:y=cosx是偶函數(shù),命題q:?x∈R,sinx=2,則下列判斷正確的是( 。
A、¬p是真命題
B、¬q是假命題
C、p∧q是真命題
D、¬p∨q是假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面區(qū)域
0≤x≤2
0≤y≤2
內(nèi)隨機取一點,則所取的點恰好滿足x+y≤
2
的概率是( 。
A、
1
16
B、
1
8
C、
1
4
D、
1
2

查看答案和解析>>

同步練習冊答案