【題目】某廠有容量300噸的水塔一個(gè),每天從早六點(diǎn)到晚十點(diǎn)供應(yīng)生活和生產(chǎn)用水,已知:該廠生活用水每小時(shí)10噸,工業(yè)用水總量W(噸)與時(shí)間t(單位:小時(shí),規(guī)定早晨六點(diǎn)時(shí)t=0)的函數(shù)關(guān)系為W=100 ,水塔的進(jìn)水量有10級(jí),第一級(jí)每小時(shí)水10噸,以后每提高一級(jí),進(jìn)水量增加10噸.若某天水塔原有水100噸,在供應(yīng)同時(shí)打開進(jìn)水管.問該天進(jìn)水量應(yīng)選擇幾級(jí),既能保證該廠用水(即水塔中水不空),又不會(huì)使水溢出?
【答案】解:設(shè)水塔進(jìn)水量選擇第n級(jí),在t時(shí)刻水塔中的水容量y等于水塔中的存水量100噸加進(jìn)水量10nt噸,減去生產(chǎn)用水10t噸,在減去工業(yè)用水W=100 噸,即y=100+10nt﹣10t﹣100 (0<t≤16);
若水塔中的水量既能保證該廠用水,又不會(huì)使水溢出,則一定有0<y≤300.
即0<100+10nt﹣10t﹣100 ≤300,
所以﹣ + +1<n≤ + +1對(duì)一切t∥(0,16]恒成立.
因?yàn)椹? + +1= ≤ , + +1= ≥ ,
所以 ,即n=4.即進(jìn)水選擇4級(jí)
【解析】解決本題的關(guān)鍵是水塔中的水不空又不會(huì)使水溢出,其存水量的平衡與進(jìn)水量、選擇的進(jìn)水級(jí)別與進(jìn)水時(shí)間相關(guān),而出水量有生活用水與工業(yè)用水兩部分構(gòu)成,故水塔中水的存量是一個(gè)關(guān)于進(jìn)水級(jí)別與用水時(shí)間的函數(shù).因此設(shè)進(jìn)水量選第n級(jí),t小時(shí)后水塔中水的剩余量為:y=100+10nt﹣10t﹣100 ,且0≤t≤16.解0<y≤300,﹣ + +1<n≤ + +1對(duì)一切t∥(0,16]恒成立,即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=lg(x+1)
(1)若0<f(1﹣2x)﹣f(x)<1,求x的取值范圍;
(2)若g(x)是以2為周期的偶函數(shù),且當(dāng)0≤x≤1時(shí),g(x)=f(x),求函數(shù)y=g(x)(x∈[1,2])的反函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某班學(xué)生的腳長x(單位:厘米)和身高y(單位:厘米)的關(guān)系,從該班隨機(jī)抽取10名學(xué)生,根據(jù)測(cè)量數(shù)據(jù)的散點(diǎn)圖可以看出y與x之間有線性相關(guān)關(guān)系,設(shè)其回歸直線方程為 = x+ ,已知 xi=225, yi=1600, =4,該班某學(xué)生的腳長為24,據(jù)此估計(jì)其身高為( 。
A.160
B.163
C.166
D.170
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的離心率為 ,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣ 交橢圓E于A,B兩點(diǎn),C是橢圓E上的一點(diǎn),直線OC的斜率為k2 , 且看k1k2= ,M是線段OC延長線上一點(diǎn),且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點(diǎn)分別為S,T,求∠SOT的最大值,并求取得最大值時(shí)直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法不正確的是( )
A.若“p且q”為假,則p、q至少有一個(gè)是假命題
B.命題“?x0∈R,x02﹣x0﹣1<0”的否定是“?x∈R,x2﹣x﹣1≥0”
C.“φ= ”是“y=sin(2x+φ)為偶函數(shù)”的充要條件
D.a<0時(shí),冪函數(shù)y=xa在(0,+∞)上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+asinx在(﹣∞,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M:x2+y2﹣2x+a=0.
(1)若a=﹣8,過點(diǎn)P(4,5)作圓M的切線,求該切線方程;
(2)若AB為圓M的任意一條直徑,且 =﹣6(其中O為坐標(biāo)原點(diǎn)),求圓M的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,圓O的參數(shù)方程為(為參數(shù)).過點(diǎn)()且傾斜角為的直線與圓O交于A、B兩點(diǎn).
(1)求的取值范圍;
(2)求AB中點(diǎn)P的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電容器充電后,電壓達(dá)到100 V,然后開始放電,由經(jīng)驗(yàn)知道,此后電壓U隨時(shí)間t變化的規(guī)律用公式U=Aebt(b<0)表示,現(xiàn)測(cè)得時(shí)間t(s)時(shí)的電壓U(V)如下表:
t(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
U(V) | 100 | 75 | 55 | 40 | 30 | 20 | 15 | 10 | 10 | 5 | 5 |
試求:電壓U對(duì)時(shí)間t的回歸方程.(提示:對(duì)公式兩邊取自然對(duì)數(shù),把問題轉(zhuǎn)化為線性回歸分析問題)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com