【題目】下列說法不正確的是(
A.若“p且q”為假,則p、q至少有一個是假命題
B.命題“?x0∈R,x02﹣x0﹣1<0”的否定是“?x∈R,x2﹣x﹣1≥0”
C.“φ= ”是“y=sin(2x+φ)為偶函數(shù)”的充要條件
D.a<0時,冪函數(shù)y=xa在(0,+∞)上單調(diào)遞減

【答案】C
【解析】解:A.若“p且q”為假,則p、q至少有一個是假命題,正確.
B.命題“x0∈R,x02﹣x0﹣1<0”的否定是“x∈R,x2﹣x﹣1≥0”,正確,
C.“φ= ”是“y=sin(2x+φ)為偶函數(shù)”的充分不必要條件,故C錯誤.
D.a(chǎn)<0時,冪函數(shù)y=xa在(0,+∞)上單調(diào)遞減,正確.
故選:C
【考點精析】解答此題的關(guān)鍵在于理解命題的真假判斷與應(yīng)用的相關(guān)知識,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

的值;

Ⅱ)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求實數(shù)的最大值;

Ⅲ)若關(guān)于的方程在區(qū)間內(nèi)有兩個實數(shù)根分別求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x|},B={x|log2(x﹣2)<1},則(UA)∩B=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是 的中點.(12分)
(Ⅰ)設(shè)P是 上的一點,且AP⊥BE,求∠CBP的大小;
(Ⅱ)當AB=3,AD=2時,求二面角E﹣AG﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點為M,GH的中點為N

(1)請將字母F,G,H標記在正方體相應(yīng)的頂點處(不需說明理由);

(2)證明:直線MN∥平面BDH

(3)求異面直線MNAG所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠有容量300噸的水塔一個,每天從早六點到晚十點供應(yīng)生活和生產(chǎn)用水,已知:該廠生活用水每小時10噸,工業(yè)用水總量W(噸)與時間t(單位:小時,規(guī)定早晨六點時t=0)的函數(shù)關(guān)系為W=100 ,水塔的進水量有10級,第一級每小時水10噸,以后每提高一級,進水量增加10噸.若某天水塔原有水100噸,在供應(yīng)同時打開進水管.問該天進水量應(yīng)選擇幾級,既能保證該廠用水(即水塔中水不空),又不會使水溢出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有兩個分類變量xy,其一組觀測值如下面的2×2列聯(lián)表所示:

y1

y2

x1

a

20a

x2

15a

30a

其中a,15a均為大于5的整數(shù),則a取何值時,在犯錯誤的概率不超過0.1的前提下認為xy之間有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜率為的直線與橢圓C:交于A、B兩點,線段AB的中點為M(),(m)。

(1)證明:;

(2)設(shè)F為C的右焦點,P為C上一點,且++=,證明:2||=||+||.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標原點,點F為拋物線C1:x2=2py(p>0)的焦點,且拋物線C1上點M處的切線與圓C2:x2+y2=1相切于點Q.

(Ⅰ)當直線MQ的方程為 時,求拋物線C1的方程;
(Ⅱ)當正數(shù)p變化時,記S1 , S2分別為△FMQ,△FOQ的面積,求 的最小值.

查看答案和解析>>

同步練習(xí)冊答案