【題目】在平面直角坐標系上,有一點列,設點的坐標(),其中. 記,,且滿足().
(1)已知點,點滿足,求的坐標;
(2)已知點,(),且()是遞增數列,點在直線:上,求;
(3)若點的坐標為,,求的最大值.
科目:高中數學 來源: 題型:
【題目】橢圓的焦點是,,且過點.
(1)求橢圓的標準方程;
(2)過左焦點的直線與橢圓相交于、兩點,為坐標原點.問橢圓上是否存在點,使線段和線段相互平分?若存在,求出點的坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,過橢圓E的左焦點且與x軸垂直的直線與橢圓E相交于的P,Q兩點,O為坐標原點,的面積為.
(1)求橢圓E的方程;
(2)點M,N為橢圓E上不同兩點,若,求證:的面積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】
對定義在區(qū)間上的函數,若存在閉區(qū)間和常數,使得對任意的都有,且對任意的都有恒成立,則稱函數為區(qū)間上的“U型”函數。
(1)求證:函數是上的“U型”函數;
(2)設是(1)中的“U型”函數,若不等式對一切的恒成立,求實數的取值范圍;
(3)若函數是區(qū)間上的“U型”函數,求實數和的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】第二屆中國國際進口博覽會于2019年11月5日至10日在上海國家會展中心舉行.它是中國政府堅定支持貿易自由化和經濟全球化,主動向世界開放市場的重要舉措,有利于促進世界各國加強經貿交流合作,促進全球貿易和世界經濟增長,推動開放世界經濟發(fā)展.某機構為了解人們對“進博會”的關注度是否與性別有關,隨機抽取了100名不同性別的人員(男、女各50名)進行問卷調查,并得到如下列聯表:
男性 | 女性 | 合計 | |
關注度極高 | 35 | 14 | 49 |
關注度一般 | 15 | 36 | 51 |
合計 | 50 | 50 | 100 |
(1)根據列聯表,能否有99.9%的把握認為對“進博會”的關注度與性別有關;
(2)若從關注度極高的被調查者中按男女分層抽樣的方法抽取7人了解他們從事的職業(yè)情況,再從7人中任意選取2人談談關注“進博會”的原因,求這2人中至少有一名女性的概率.
附:.
參考數據:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com