【題目】已知函數(shù) ,且上單調遞增,且函數(shù)的圖象恰有兩個不同的交點,則實數(shù)的取值范圍是( )

A. B. C. D.

【答案】C

【解析】

函數(shù)R上單調遞增,所以每一段均要遞增,且第一段的端點值要不小于第二段的端點值;函數(shù)與直線有兩個不同交點,畫出函數(shù)圖像可以得出,有兩種情況,然后分情況討論解決問題。

解:函數(shù)R上單調遞增,

所以有,解得;

因為函數(shù)與直線有兩個不同交點,

作出兩個函數(shù)的圖像,

由圖像知,直線與函數(shù)圖像只有一個交點,

故直線只能有一個公共點。

根據(jù)圖像,可分如下兩種情況:

如圖(1)的情況,相交于一點,

此時滿足,解得,故;

1 2

如圖2的情況,直線相切于一點,

聯(lián)立方程組

得,

即:

所以,,解得

綜上:,故選C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某儀器經(jīng)過檢驗合格才能出廠,初檢合格率為:若初檢不合格,則需要進行調試,經(jīng)調試后再次對其進行檢驗;若仍不合格,作為廢品處理,再檢合格率為.每臺儀器各項費用如表:

項目

生產成本

檢驗費/次

調試費

出廠價

金額(元)

1000

100

200

3000

(Ⅰ)求每臺儀器能出廠的概率;

(Ⅱ)求生產一臺儀器所獲得的利潤為1600元的概率(注:利潤出廠價生產成本檢驗費調試費);

(Ⅲ)假設每臺儀器是否合格相互獨立,記為生產兩臺儀器所獲得的利潤,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為、是雙曲線上一點,的內切圓半徑為,則其漸近線方程是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)的導函數(shù),,,,( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,,四邊形為矩形,且平面.

(1)求證:平面;

(2)點在線段上運動,當點在什么位置時,平面與平面所成銳二面角最大,并求此時二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)在很多人喜歡自助游,2017年孝感楊店桃花節(jié),美麗的桃花風景和人文景觀迎來眾多賓客.某調查機構為了了解自助游是否與性別有關,在孝感桃花節(jié)期間,隨機抽取了人,得如下所示的列聯(lián)表:

贊成自助游

不贊成自助游

合計

男性

女性

合計

1若在這人中,按性別分層抽取一個容量為的樣本女性應抽人,請將上面的列聯(lián)表補充完整,并據(jù)此資料能否在犯錯誤的概率不超過前提下,認為贊成自助游是與性別有關系?

2若以抽取樣本的頻率為概率,從旅游節(jié)大量游客中隨機抽取人贈送精美紀念品,記這人中贊成自助游人數(shù)為,的分布列和數(shù)學期望.

:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角的對邊分別為,向量(,

,滿足.

(1)求角的大。

(2)設 , 有最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的奇函數(shù),當時,滿足

( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,過點P分別做圓O的切線PA、PB和割線PCD,弦BE交CD于F,滿足P、B、F、A四點共圓.
(Ⅰ)證明:AE∥CD;
(Ⅱ)若圓O的半徑為5,且PC=CF=FD=3,求四邊形PBFA的外接圓的半徑.

查看答案和解析>>

同步練習冊答案