用長(zhǎng)度為24m、的材料圍一個(gè)矩形場(chǎng)地,中間有兩道隔墻,要使矩形的面積最大,則隔墻的長(zhǎng)度應(yīng)為多少?為什么?
考點(diǎn):基本不等式在最值問(wèn)題中的應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:若設(shè)矩形場(chǎng)地的寬為x,則長(zhǎng)為
24-4x
2
,其面積為S=
24-4x
2
•x,整理得x的二次函數(shù),能求出函數(shù)的最值以及對(duì)應(yīng)的x的值.
解答: 解:如圖所示,設(shè)矩形場(chǎng)地的寬為x,則長(zhǎng)為
24-4x
2
,其面積為:
S=
24-4x
2
•x=12x-2x2=-2(x2-6x+9)+18=-2(x-3)2+18
當(dāng)x=3時(shí),S有最大值,為18;
所以隔墻寬應(yīng)為3.
點(diǎn)評(píng):本題借助于矩形的周長(zhǎng)與面積,考查了二次函數(shù)的最值問(wèn)題,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2008年5月18日某愛(ài)心人士為一位孤兒去銀行存款a元,存的是一年定期儲(chǔ)蓄;2009年5月18日他將到期存款的本息一起取出,再加a元后,還存一年的定期儲(chǔ)蓄,此后每年5月18日都如此;假設(shè)銀行一年定期儲(chǔ)蓄的年利率r不變,直到2015年5月18日這位孤兒準(zhǔn)備上大學(xué)時(shí),他將所有的存款和利息全部取出并且資助給這位孤兒,取出的錢數(shù)共為( 。
A、a(1+r)7
B、a[(1+r)7+(1+r)]元
C、
a
r
[(1+r)7-r]元
D、
a
r
[(1+r)8-(1+r)]元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}各項(xiàng)均為正數(shù),求證:
1
a1
+
a2
+
1
a2
+
a3
+…+
1
an-1
+
an
=
n-1
an
+
a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把3個(gè)不同的禮物(A,B,C)分給2個(gè)人(甲,乙),有幾種分法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一幾何體的正視圖和側(cè)視圖是邊長(zhǎng)為2的等邊三角形,俯視圖是直徑為2的圓,則此幾何體的表面積為(  )
A、4π+2
3
B、2π+2
3
C、3π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Z=
2
x2
+
2y
x
+7
,若x2+y2=2,求Z的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(6,2),
b
=(-4,
1
2
),過(guò)點(diǎn)A(3,-1)且與向量
a
+2
b
平行的直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=Asin(ωx+φ),(A>0,ω>0,-π<φ<π)的圖象過(guò)點(diǎn)P(
π
12
,0),圖象上與點(diǎn)P最近的一個(gè)頂點(diǎn)是Q(
π
3
,5).
(1)求函數(shù)f(x)≤0,x的取值范圍.
(2)求f(x)的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

加工爆米花時(shí),爆開(kāi)且不糊的粒數(shù)占加工總粒數(shù)的百分比稱為“可食用率”,在特定條件下,可食用率p與加工時(shí)間t(單位:分鐘)滿足下列某函數(shù)關(guān)系:①p=at+b②p=alogbt③p=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三次實(shí)驗(yàn)的數(shù)據(jù),
(1)根據(jù)這三次實(shí)驗(yàn)數(shù)據(jù),請(qǐng)選用合適的函數(shù)模型,并說(shuō)明理由
(2)利用你選取的函數(shù),求出最佳的加工時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案