【題目】已知橢圓的左右頂點分別為,左焦點為,已知橢圓的離心率為,且過點.

(1)求橢圓的方程;

(2)若過點的直線與該橢圓交于兩點,且線段的中點恰為點,求直線的方程.

【答案】(1);(2).

【解析】

(1)由離心率及橢圓過點,列出關(guān)于的方程求解即可

(2)PxP,yP),QxQ,yQ),將兩點代入橢圓方程,進而兩式作差可得,進而由點斜式可得解.

(1)因為e,則3a2=4b2,

將(1,)代入橢圓方程: +=1,解得:a=2,b,

所以橢圓方程為+=1;

(2)設PxP,yP),QxQyQ),

∵線段PQ的中點恰為點N,

xP+xQ=2,yP+yQ=2,

+=1, +=1,兩式相減可得xP+xQ)(xPxQ)+yP+yQ)(yPyQ)=0,

=﹣

即直線PQ的斜率為﹣,

∴直線PQ的方程為y﹣1=﹣x﹣1),即3x+4y﹣7=0.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)需要設計一個倉庫,它由上下兩部分組成,上部的形狀是正四棱錐PA1B1C1D1,下部的形狀是正四棱柱ABCDA1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.

(1)若AB=6 m,PO1=2 m,則倉庫的容積是多少?

(2)若正四棱錐的側(cè)棱長為6 m,則當PO1為多少時,倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給圖中A,B,CD,EF六個區(qū)域進行染色,每個區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次購物抽獎活動中,假設某10張券中有一等獎券2張,每張可獲價值50元的獎品;有二等獎券2張,每張可獲價值10元的獎品;其余6張沒有獎.某顧客從此10張獎券中任抽2張,求:

1)該顧客中獎的概率;

2)該顧客獲得的獎品總價值X元的概率分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】畫棱長為2 cm的正方體的直觀圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:

①純虛數(shù)z的共軛復數(shù)是;

②若,則;

③若,則互為共軛復數(shù);

④若,則互為共軛復數(shù).

其中正確命題的序號是_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】西光廠眼鏡車間接到一批任務,需要加工6000個型零件和2000個型零件.這個車間有214名工人,他們每一個人加工5個型零件的時間可以加工3個型零件.將這些工人分成兩組,兩組同時工作,每組加工一種型號的零件,為了在最短的時間內(nèi)完成這批任務,應怎樣分組?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)若,求的值;

(2)若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,,且G具有下列兩條性質(zhì):(1)對任何,恒有;(2).試證明:G中奇數(shù)的個數(shù)是4的倍數(shù),且G中所有數(shù)的平方和為定值.

查看答案和解析>>

同步練習冊答案