有6個(gè)房間安排4個(gè)旅游者住宿,每人可以隨意進(jìn)哪一間,而且一個(gè)房間也可以住多個(gè)人,求下列問題中各有多少種不同的住法?
(1)每人隨意選擇,則所有的入住方法;
(2)第1號(hào)房間有1人,第2號(hào)房間有3人;
(3)指定的4個(gè)房間中各有1人;
(4)恰有1個(gè)房間中有2人;
(5)恰有2個(gè)房間中各有2人.
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:根據(jù)排列組合的原則,先選再排,看看是分類還是分步,分別按(1),(2),(3),(4),(5)的要求進(jìn)行排列即可.
解答: 解:4個(gè)人住進(jìn)6個(gè)房間,所有可能的住房結(jié)果總數(shù)為:
(1)根據(jù)分步計(jì)數(shù)原理,4個(gè)旅游者每一人算一步,每一步都有6種選擇,共有64種;
(2)先安排第一房間,再安排地三個(gè)房間,則第一號(hào)房間1人,第二號(hào)房間3人的不同住法總數(shù)為:
C
1
4
•C
3
3
=4(種)
(3)指定的4個(gè)房間每間1人,就是4人住進(jìn)4個(gè)房間的排列,共有
A
4
4
=24種不同住法;
(4)恰有一個(gè)房間中有兩人,先選2人,再選一個(gè)房間,住進(jìn)這一個(gè)房間,剩下的任意排,共有
C
2
4
•C
1
6
•A
3
5
=720
種;
(5)恰有2個(gè)房間中各有2人
C
2
4
A
2
2
•A
2
5
=60種.
點(diǎn)評(píng):本題考查了排列組合中先選再排的問題,關(guān)鍵讀懂題意,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題p:a(a-1)≤0;命題q:y=xa(x為自變量)在第一象限是增函數(shù),p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,且a3+a9=
3
,sina6cosa6的值為( 。
A、-
3
4
B、
3
4
C、±
3
6
D、-
3
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>b>0,a+b=1且x=(
1
a
b,y=log (
1
a
+
1
b
)
a,z=log
1
b
a,則x,y,z的大小關(guān)系是( 。
A、y<x<z
B、z<y<x
C、y<z<x
D、x<y<z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={x∈N|x≤5},A={0,1,2,3},B={0,3,4,5},則B∩(∁UA)=( 。
A、{3}
B、{4,5}
C、{3,4,5}
D、{4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某鄉(xiāng)鎮(zhèn)供電所為了調(diào)查農(nóng)村居民用電量情況,隨機(jī)抽取了500戶居民去年的用電量(單位:kw/h),將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如下;其中直方圖從左到右前3個(gè)小矩形的面積之比為1:2:3.
(1)該鄉(xiāng)鎮(zhèn)月均用電量在37.5~39.5之內(nèi)的居民共有多少戶?
(2)若按分層抽樣的方法從中抽出100戶作進(jìn)一步分析,則用電量在37.5~39.5內(nèi)居民應(yīng)抽取多少戶?
(3)試根據(jù)直方圖估算該鄉(xiāng)鎮(zhèn)居民月均用電量的中位數(shù)約是多少?(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,公差d≠0,a1=2,且a1,a3,a7成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=
1
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
.
2cos(x-
π
2
)
sin2x
2cos(x+
π
6
)
.
,(x∈R)
(1)求f(x)的最小正周期及判斷函數(shù)f(x)的奇偶性;
(2)在△ABC中,f(A)=0,|
AC
|=m,m∈[2,4].若對(duì)任意實(shí)數(shù)t恒有|
AB
-t
AC
|≥|
BC
|,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差大于0的等差數(shù)列,且a1=2,a3=a22-10.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}是以函數(shù)f(x)=4sin2πx的最小正周期為首項(xiàng),以f(
1
3
)為公比的等比數(shù)列,求數(shù)列{an-bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案