【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

(1)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,記隨機變量表示質(zhì)量在內(nèi)的芒果個數(shù),求的分布列及數(shù)學(xué)期望.

(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,將頻率視為概率,某經(jīng)銷商來收購芒果,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:

A:所以芒果以/千克收購;

B:對質(zhì)量低于克的芒果以/個收購,高于或等于克的以/個收購.

通過計算確定種植園選擇哪種方案獲利更多?

【答案】(1)見解析;(2)見解析.

【解析】試題分析:(1)個芒果中,質(zhì)量在內(nèi)的分別有個和.

的可能取值為,分別求出各隨機變量對應(yīng)的概率,從而可得的分布列,利用期望公式可求得的數(shù)學(xué)期望;(2)分別求出兩種方案獲利的數(shù)學(xué)期望(即平均值),比較兩個平均值的大小,平均值較大的方案獲利更大.

試題解析:(1)9個芒果中,質(zhì)量在內(nèi)的分別有6個和3.

的可能取值為0,1,2,3.

,,

,

所以的分布列為

的數(shù)學(xué)期望.

(2)方案A:

方案B:

低于250克:

高于或等于250

總計

,故B方案獲利更多,應(yīng)選B方案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面半徑為,母線長為的圓柱的軸截面是四邊形,線段上的兩動點 滿足.點在底面圓上,且 為線段的中點.

(Ⅰ)求證: 平面;

(Ⅱ)四棱錐的體積是否為定值,若是,請求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了準確把握市場,做好產(chǎn)品計劃,特對某產(chǎn)品做了市場調(diào)查:先銷售該產(chǎn)品50天,統(tǒng)計發(fā)現(xiàn)每天的銷售量分布在內(nèi),且銷售量的分布頻率滿足:

(1)求的值并估計銷售量的平均數(shù);

(2)若銷售量大于等于80,則稱該日暢銷,其余為滯銷.在暢銷日中用分層抽樣的方法隨機抽取6天,再從這6天中隨機抽取3天進行統(tǒng)計,求這3天不都來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),常數(shù)

1)求函數(shù)在區(qū)間上的零點個數(shù);

2)函數(shù)的導(dǎo)數(shù),是否存在無數(shù)個,使得為函數(shù)的極大值點?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱中,為正三角形,點在棱上,且,點分別為棱,的中點.

(1)證明:平面;

(2)若,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標系的原點為極點,軸的正半軸為極軸建立坐標系,曲線的極坐標方程為.

(1)求的普通方程和的直角坐標方程;

(2)若過點的直線交于兩點,與交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),曲線在點處的切線與直線垂直.

(1)求的值;

(2)若對于任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,點的坐標為,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,以軸的非負半軸為極軸,選擇相同的單位長度建立極坐標系,圓極坐標方程為.

(Ⅰ)當(dāng)時,求直線的普通方程和圓的直角坐標方程;

(Ⅱ)直線與圓的交點為、,證明:是與無關(guān)的定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

)設(shè),討論函數(shù)的單調(diào)性.

)設(shè),求證:當(dāng)時,

查看答案和解析>>

同步練習(xí)冊答案