【題目】在直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸,選擇相同的單位長(zhǎng)度建立極坐標(biāo)系,圓極坐標(biāo)方程為.
(Ⅰ)當(dāng)時(shí),求直線的普通方程和圓的直角坐標(biāo)方程;
(Ⅱ)直線與圓的交點(diǎn)為、,證明:是與無(wú)關(guān)的定值.
【答案】(1)直線的普通方程為,圓的直角坐標(biāo)方程為;(2)見解析.
【解析】試題分析:(Ⅰ)當(dāng)時(shí),消去得到直線的普通方程,由圓極坐標(biāo)方程,根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可得到原的直角坐標(biāo)方程.
(Ⅱ)將直線的參數(shù)方程代入圓的方程,,得,由的幾何意義可求得的值.
試題解析:
(Ⅰ)當(dāng)時(shí),的參數(shù)方程為(為參數(shù)),
消去得.由圓極坐標(biāo)方程為,得.
故直線的普通方程為圓的直角坐標(biāo)方程為.
(Ⅱ)將代入得,.
設(shè)其兩根分別為,則.
由的幾何意義知 .故為定值(與無(wú)關(guān)) .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個(gè)桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在范圍內(nèi)(單位:毫米,以下同),按規(guī)定直徑在內(nèi)為優(yōu)質(zhì)品,現(xiàn)從甲、乙兩基地所采摘的桔柚中各隨機(jī)抽取500個(gè),測(cè)量這些桔柚的直徑,所得數(shù)據(jù)整理如下:
(1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答是否有以上的把握認(rèn)為“桔柚直徑與所在基地有關(guān)”?
(2)求優(yōu)質(zhì)品率較高的基地的500個(gè)桔柚直徑的樣本平均數(shù) (同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);
(3)記甲基地直徑在范圍內(nèi)的五個(gè)桔柚分別為,現(xiàn)從中任取二個(gè),求含桔柚的概率.
附: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.
(1)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取個(gè),再?gòu)倪@個(gè)中隨機(jī)抽取個(gè),記隨機(jī)變量表示質(zhì)量在內(nèi)的芒果個(gè)數(shù),求的分布列及數(shù)學(xué)期望.
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,將頻率視為概率,某經(jīng)銷商來收購(gòu)芒果,該種植園中還未摘下的芒果大約還有個(gè),經(jīng)銷商提出如下兩種收購(gòu)方案:
A:所以芒果以元/千克收購(gòu);
B:對(duì)質(zhì)量低于克的芒果以元/個(gè)收購(gòu),高于或等于克的以元/個(gè)收購(gòu).
通過計(jì)算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年6月深圳地鐵總公司對(duì)深圳地鐵1號(hào)線30個(gè)站的工作人員的服務(wù)態(tài)度進(jìn)行了滿意度調(diào)查,其中世界之窗、白石洲、高新園、深大、桃園、大新6個(gè)站的得分情況如下:
地鐵站 | 世界之窗 | 白石州 | 高新園 | 深大 | 桃園 | 大新 |
滿意度得分 | 70 | 76 | 72 | 70 | 72 | x |
已知6個(gè)站的平均得分為75分.
(1)求大新站的滿意度得分x,及這6個(gè)站滿意度得分的標(biāo)準(zhǔn)差;
(2)從表中前5個(gè)站中,隨機(jī)地選2個(gè)站,求恰有1個(gè)站得分在區(qū)間(68,75)中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(1)求圓的圓心到直線的距離;
(2)設(shè)圓與直線交于點(diǎn),,若點(diǎn)的坐標(biāo)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程是:(是參數(shù),是常數(shù)).以為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線相交于、兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)Q為曲線C上的一個(gè)不在軸上的動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),過點(diǎn)作OQ的平行線交曲線C于M,N兩個(gè)不同的點(diǎn), 求△QMN面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com