【題目】設(shè)函數(shù)

)設(shè),討論函數(shù)的單調(diào)性.

)設(shè),求證:當(dāng)時,

【答案】(1)見解析;(2)見解析

【解析】試題分析:求得,兩種討論,即可求解函數(shù)的單調(diào)性;

當(dāng),由()可知,當(dāng)時,,上單調(diào)遞增,當(dāng)時,,低調(diào)遞減,得取得最大值,得到,代入得,得到,即可作出證明.

試題解析:

,且定義域為,

當(dāng)時,,

上單調(diào)遞增,

當(dāng)時,,有,

當(dāng),,當(dāng),,

在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

綜上,當(dāng)時,上單調(diào)遞增,

當(dāng)時,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.

,由()可知, 上單調(diào)遞增,

,

,

∴存在唯一,使得,且,

,

,

當(dāng)時,,上單調(diào)遞增,

當(dāng)時,,低調(diào)遞減,

取得最大值,即為在區(qū)間的最大值,

,

代入,

在單調(diào)遞增,,

,

∴當(dāng)時,有

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

(1)現(xiàn)按分層抽樣從質(zhì)量為的芒果中隨機抽取個,再從這個中隨機抽取個,記隨機變量表示質(zhì)量在內(nèi)的芒果個數(shù),求的分布列及數(shù)學(xué)期望.

(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,將頻率視為概率,某經(jīng)銷商來收購芒果,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:

A:所以芒果以/千克收購;

B:對質(zhì)量低于克的芒果以/個收購,高于或等于克的以/個收購.

通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.

(1)求圓的圓心到直線的距離;

(2)設(shè)圓與直線交于點,,若點的坐標(biāo)為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程是:是參數(shù),是常數(shù)).以為極點,軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于、兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),在以坐標(biāo)原點為極點,軸非負(fù)軸為極軸的極坐標(biāo)系中,曲線(為極角).

(1)將曲線化為極坐標(biāo)方程,當(dāng)時,將化為直角坐標(biāo)方程;

(2)若曲線相交于一點,求點的直角坐標(biāo)使到定點的距離最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

Ⅰ)求的反函數(shù)的圖象上點(1,0)處的切線方程;

Ⅱ)證明:曲線與曲線有唯一公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機構(gòu)組織語文、數(shù)學(xué)學(xué)科能力競賽,按照一定比例淘汰后,頒發(fā)一二三等獎.現(xiàn)有某考場的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,其中數(shù)學(xué)科目成績?yōu)槎泉劦目忌?/span>人.

(Ⅰ)求該考場考生中語文成績?yōu)橐坏泉劦娜藬?shù);

(Ⅱ)用隨機抽樣的方法從獲得數(shù)學(xué)和語文二等獎的學(xué)生中各抽取人,進(jìn)行綜合素質(zhì)測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進(jìn)行比較分析;

(Ⅲ)已知本考場的所有考生中,恰有人兩科成績均為一等獎,在至少一科成績?yōu)橐坏泉劦目忌校S機抽取人進(jìn)行訪談,求兩人兩科成績均為一等獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線.

(Ⅰ)求曲線C的方程;

(Ⅱ)設(shè)Q為曲線C上的一個不在軸上的動點,O為坐標(biāo)原點,過點OQ的平行線交曲線CM,N兩個不同的點, 求△QMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了推動數(shù)學(xué)教學(xué)方法的改革,學(xué)校將高一年級部分生源情況基本相同的學(xué)生分成甲、乙兩個班,每班各40人,甲班按原有模式教學(xué),乙班實施教學(xué)方法改革.經(jīng)過一年的教學(xué)實驗,將甲、乙兩個班學(xué)生一年來的數(shù)學(xué)成績?nèi)∑骄鶖?shù),兩個班學(xué)生的平均成績均在,按照區(qū)間,,進(jìn)行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80分(百分制)為優(yōu)秀.

完成表格,并判斷是否有以上的把握認(rèn)為“數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān)”;

(2)從乙班,分?jǐn)?shù)段中,按分層抽樣隨機抽取7名學(xué)生座談,從中選三位同學(xué)發(fā)言,記來自發(fā)言的人數(shù)為隨機變量,求的分布列和期望.

查看答案和解析>>

同步練習(xí)冊答案