函數(shù)y=log3(x-1)+
2-x
的定義域為( 。
A、(1,2]
B、(1,+∞)
C、(2,+∞)
D、(-∞,0)
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由對數(shù)式的真數(shù)大于0,根式內(nèi)部的代數(shù)式大于等于0聯(lián)立不等式組,求解x的取值集合得答案.
解答: 解:由
x-1>0
2-x≥0
,解得:1<x≤2.
∴函數(shù)y=log3(x-1)+
2-x
的定義域為(1,2].
故選:A.
點(diǎn)評:本題考查了函數(shù)的定義域及其求法,考查了不等式組的解法,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于曲線y=f(x),若存在直線l使得曲線y=f(x)位于直線l的同一側(cè),則稱曲線y=f(x)為半面曲線,下列曲線中是半面曲線的序號為
 
.(填上所有正確的序號)
①y=
1
x
 ②y=x3  ③y=x4+x3 ④y=x+
1
x
 ⑤y=1-x2+xsinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x=-1”是“x2=1”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊在直線y=2x上,試求下列各式的值:
(1)sinα•cosα
(2)sin2α-3sinαcosα+3cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若Tn=
1
2
(1-
1
6n+1
),求使得Tn
m
20
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A,B為銳角三角形的兩個內(nèi)角,則復(fù)數(shù)cos(A+B)+icos(A-B)對應(yīng)的點(diǎn)位于復(fù)平面的( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1,x>0
x-1,x≤0
,則f(0)+f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的數(shù)陣叫“萊布尼茲調(diào)和三角形”,他們是由整數(shù)的倒數(shù)組成的,第n行有n個數(shù)且兩端的數(shù)均為
1
n
(n≥2)
,每個數(shù)是它下一行左右相鄰兩數(shù)的和,如:
1
1
=
1
2
+
1
2
,
1
2
=
1
3
+
1
6
,
1
3
=
1
4
+
1
12
…,則
(1)第6行第3個數(shù)字是
 

(2)第n(n≥3)行第3個數(shù)字是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,過F1作圓:x2+y2=
a2
4
的切線,切點(diǎn)為E,延長F1E交雙曲線右支于點(diǎn)P,若|OP|=
1
2
|F1F2|(O為坐標(biāo)原點(diǎn)),則雙曲線的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案