【題目】某廠使用兩種零件、裝配兩種產(chǎn)品、,該廠的生產(chǎn)能力是月產(chǎn)產(chǎn)品最多有2500件,月產(chǎn)產(chǎn)品最多有1200件;而且組裝一件產(chǎn)品要4個、2個,組裝一件產(chǎn)品要6個、8個,該廠在某個月能用的零件最多14000個;零件最多12000個.已知產(chǎn)品每件利潤1000元,產(chǎn)品每件2000元,欲使月利潤最大,需要組裝、產(chǎn)品各多少件?最大利潤多少萬元?
【答案】要使月利潤最大,需要組裝、產(chǎn)品2000件、1000件,此時最大利潤為400萬元
【解析】
設(shè)分別生產(chǎn)、產(chǎn)品件、件,根據(jù)題設(shè)條件可得滿足的不等式組且利潤,利用線性規(guī)劃可求的最大值及取最大值時對應(yīng)的的值.
設(shè)分別生產(chǎn)、產(chǎn)品件、件,則有
依題意有.
設(shè)利潤為,則,
要使利潤最大,只需求的最大值.
作出可行域如圖所示(陰影部分及邊界):
作出直線:,即,
由于向上平移直線時,的值增大,所以在點(diǎn)處取得最大值,
由解得,即,
因此,此時最大利潤(萬元)..
答:要使月利潤最大,需要組裝、產(chǎn)品2000件、1000件,此時最大利潤為400萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若定義在D上的函數(shù)滿足:對任意,存在常數(shù),都有成立,則稱是D上的有界函數(shù),其中M稱為函數(shù)的上界,已知函數(shù),.
求函數(shù)在上的值域,判斷函數(shù)在上是否為有界函數(shù),并說明理由;
若函數(shù)在上是以3為上界的函數(shù),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓W:的左焦點(diǎn)F1作直線l1交橢圓于A,B兩點(diǎn),其中A(0,1),另一條過F1的直線l2交橢圓于C,D兩點(diǎn)(不與A,B重合),且D點(diǎn)不與點(diǎn)0,﹣1重合.過F1作x軸的垂線分別交直線AD,BC于E,G.
(1)求B點(diǎn)坐標(biāo)和直線l1的方程;
(2)比較線段EF1和線段GF1的長度關(guān)系并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,點(diǎn)P為AD的中點(diǎn),點(diǎn)Q為上的動點(diǎn),給出下列說法:
可能與平面平行;
與BC所成的最大角為;
與PQ一定垂直;
與所成的最大角的正切值為;
.
其中正確的有______寫出所有正確命題的序號
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點(diǎn)、直線,我們稱為點(diǎn)到直線的方向距離.
(1)設(shè)雙曲線上的任意一點(diǎn)到直線,的方向距離分別為,求的值;
(2)設(shè)點(diǎn)、到直線的方向距離分別為,試問是否存在實(shí)數(shù),對任意的都有成立?說明理由;
(3)已知直線和橢圓,設(shè)橢圓的兩個焦點(diǎn)到直線的方向距離分別為滿足,且直線與軸的交點(diǎn)為、與軸的交點(diǎn)為,試比較的長與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)在上有兩個不同的零點(diǎn),則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)圖象相鄰兩條對稱軸的距離為,將函數(shù)的圖象向左平移個單位后,得到的圖象關(guān)于y軸對稱則函數(shù)的圖象( )
A. 關(guān)于直線對稱 B. 關(guān)于直線對稱
C. 關(guān)于點(diǎn)對稱 D. 關(guān)于點(diǎn)對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
()設(shè)曲線在處的切線為,到點(diǎn)的距離為,求的值.
()若對于任意實(shí)數(shù),恒成立,試確定的取值范圍.
()當(dāng)時,是否存在實(shí)數(shù),使曲線在點(diǎn)處的切線與軸垂直?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率,連接橢圓的四個頂點(diǎn)得到的菱形的面積為.
求橢圓C的方程;
如圖所示,該橢圓C的左、右焦點(diǎn),作兩條平行的直線分別交橢圓于A,B,C,D四個點(diǎn),試求平行四邊形ABCD面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com