【題目】已知函數(shù),若函數(shù)上有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是__________

【答案】

【解析】

函數(shù)可化為:fx,

∵若m>0,當(dāng)0<x<2時(shí),fx)遞增,

當(dāng)2≤x<3時(shí),fx)的對(duì)稱軸是x0,

故函數(shù)fx)在[2,3)遞增,∵fx)在(0,3)連續(xù),∴fx)在(0,3)遞增;

∴當(dāng)m>0時(shí),函數(shù)fx)在(0,3)不可能有2個(gè)不同的零點(diǎn),

當(dāng)m=0時(shí),fx在(0,3)上沒有2個(gè)不同的零點(diǎn),

當(dāng)m<0時(shí),fx)在(0,2)遞減,

①當(dāng)02即﹣8≤m<0時(shí),函數(shù)fx)在[2,3)遞增,

故函數(shù)fx)在區(qū)間(0,3)有2個(gè)不同的零點(diǎn)只需滿足:

,解得:m<﹣2,

②當(dāng)23即﹣12<m<﹣8時(shí),

函數(shù)fx)在(0,)遞減,在(,3)遞增,

故函數(shù)fx)在區(qū)間(0,3)有2個(gè)不同的零點(diǎn)只需滿足:

,解得m>,又﹣12<m<﹣8,所以不存在滿足條件的m,

③當(dāng)3即m≤﹣12時(shí),函數(shù)fx)在(0,3)遞減,

函數(shù)fx)在(0,3)上不可能有2個(gè)不同的零點(diǎn),

綜上,m<﹣2時(shí),函數(shù)fx)在區(qū)間(1,3)上有2個(gè)不同的零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是坐標(biāo)原點(diǎn),過的直線分別交拋物線兩點(diǎn),直線與過點(diǎn)平行于軸的直線相交于點(diǎn),過點(diǎn)與此拋物線相切的直線與直線相交于點(diǎn).則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左.右焦點(diǎn)分別為,為坐標(biāo)原點(diǎn).

(1)若斜率為的直線交橢圓于點(diǎn),若線段的中點(diǎn)為,直線的斜率為,求的值;

(2)已知點(diǎn)是橢圓上異于橢圓頂點(diǎn)的一點(diǎn),延長(zhǎng)直線,分別與橢圓交于點(diǎn),設(shè)直線的斜率為,直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品廠為了檢查甲、乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取100件產(chǎn)品作為樣本稱出它們的質(zhì)量(單位:毫克),質(zhì)量值落在的產(chǎn)品為合格品,否則為不合格品.如表是甲流水線樣本頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.

產(chǎn)品質(zhì)量/毫克

頻數(shù)

3

9

19

35

22

7

5

(1)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為產(chǎn)品的包裝合格與兩條自動(dòng)包裝流水線的選擇有關(guān)?

甲流水線

乙流水線

總計(jì)

合格品

不合格品

總計(jì)

附表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,

(2)按照以往經(jīng)驗(yàn),在每小時(shí)次品數(shù)超過180件時(shí),產(chǎn)品的次品率會(huì)大幅度增加,為檢測(cè)公司的生產(chǎn)能力,同時(shí)盡可能控制不合格品總量,公司工程師抽取幾組一小時(shí)生產(chǎn)產(chǎn)品數(shù)據(jù)進(jìn)行次品情況檢查分析,在(單位:百件)件產(chǎn)品中,得到次品數(shù)量(單位:件)的情況匯總?cè)缦卤硭荆?/span>

(百件)

0.5

2

3.5

4

5

(件)

2

14

24

35

40

根據(jù)公司規(guī)定,在一小時(shí)內(nèi)不允許次品數(shù)超過180件,請(qǐng)通過計(jì)算分析,按照公司的現(xiàn)有生產(chǎn)技術(shù)設(shè)備情況,判斷可否安排一小時(shí)生產(chǎn)2000件的任務(wù)?

(參考公式:用最小二乘法求線性回方程的系數(shù)公式

;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若在區(qū)間上不是單調(diào)函數(shù),求實(shí)數(shù)的范圍;

(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),設(shè),對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,而且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地的出租車價(jià)格規(guī)定:起步費(fèi)元,可行公里,公里以后按每公里元計(jì)算,可再行公里;超過公里按每公里元計(jì)算,假設(shè)不考慮堵車和紅綠燈等所引起的費(fèi)用,也不考慮實(shí)際收取費(fèi)用去掉不足一元的零頭等實(shí)際情況,即每一次乘車的車費(fèi)由行車?yán)锍涛ㄒ淮_定。

1)若小明乘出租車從學(xué)校到家,共公里,請(qǐng)問他應(yīng)付出租車費(fèi)多少元?

2)求車費(fèi)(元)與行車?yán)锍?/span>(公里)之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說:“是作品獲得一等獎(jiǎng)”;

乙說:“作品獲得一等獎(jiǎng)”;

丙說:“兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說:“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地區(qū)2012年至2018年生活垃圾無害化處理量(單位:萬噸)的折線圖.

注:年份代碼分別表示對(duì)應(yīng)年份.

1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)用相關(guān)系數(shù)線性相關(guān)較強(qiáng))加以說明;

2)建立的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2019年該區(qū)生活垃圾無害化處理量.

(參考數(shù)據(jù)),,,,,,.

(參考公式)相關(guān)系數(shù),在回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

同步練習(xí)冊(cè)答案