(本小題滿分13分)
在平面直角坐標系中,已知點,點在直線上運動,過點垂直的直線和的中垂線相交于點
(Ⅰ)求動點的軌跡的方程;
(Ⅱ)設(shè)點是軌跡上的動點,點軸上,圓為參數(shù))內(nèi)切于,求的面積的最小值.
(1)(2)當點的坐標為時,的面積取最小值
(Ⅰ)設(shè)點的坐標為,由題設(shè)知,
所以動點的軌跡是以為焦點,為準線的拋物線,其方程為.      ……
(Ⅱ)設(shè),,,且,
故直線的方程為
消去參數(shù),得.                           ……
由題設(shè)知,圓心到直線的距離為,即
注意到,化簡上式,得,同理可得

由上可知,,為方程的兩根,根據(jù)求根公式,可得
.                                                   ……
的面積為
,等號當且僅當時成立.此時點的坐標為
綜上所述,當點的坐標為時,的面積取最小值
……
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共14分)
已知,動點到定點的距離比到定直線的距離小.
(I)求動點的軌跡的方程;
(Ⅱ)設(shè)是軌跡上異于原點的兩個不同點,,求面積的最小值;
(Ⅲ)在軌跡上是否存在兩點關(guān)于直線對稱?若存在,求出直線 的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓的左焦點F的直線交橢圓于點A、B,交其左準線于點C,
,則此直線的斜率為                     
A、   B、   C、     D、 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本大題滿分14分)如圖,F(xiàn)為雙曲線C:的右焦點。P為雙曲線C右支上一點,且位于軸上方,M為左準線上一點,為坐標原點。已知四邊形為平行四邊形,。
(Ⅰ)寫出雙曲線C的離心率的關(guān)系式;
(Ⅱ)當時,經(jīng)過焦點F且品行于OP的直線交雙曲線于A、B點,若,求此時的雙曲線方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式可把平面直角坐標系上的一點變換到這一平面上的一點.
(1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點的坐標;
(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標;
(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,是否存在斜率為k(k≠0)的直線,使與橢圓交于不同的兩點A、B,且線段的垂直平分線經(jīng)過點M(0,-1),求斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓與雙曲線的焦點相同,則        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過原點的直線與橢圓交于A、B兩點,,為橢圓的焦點,則四邊形AF1BF2面積的最大值是                 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線處的切線的斜率是(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案