【題目】如圖,在平面直角坐標系xOy中,已知圓C:x2+y2﹣4x=0及點A(﹣1,0),B(1,2)
(1)若直線l平行于AB,與圓C相交于M,N兩點,MN=AB,求直線l的方程;
(2)在圓C上是否存在點P,使得PA2+PB2=12?若存在,求點P的個數(shù);若不存在,說明理由.
【答案】
(1)解:圓C的標準方程為(x﹣2)2+y2=4,所以圓心C(2,0),半徑為2.
因為l∥AB,A(﹣1,0),B(1,2),所以直線l的斜率為 ,
設直線l的方程為x﹣y+m=0,
則圓心C到直線l的距離為 .
因為 ,
而 ,所以 ,
解得m=0或m=﹣4,
故直線l的方程為x﹣y=0或x﹣y﹣4=0.
(2)解:假設圓C上存在點P,設P(x,y),則(x﹣2)2+y2=4,
PA2+PB2=(x+1)2+(y﹣0)2+(x﹣1)2+(y﹣2)2=12,
即x2+y2﹣2y﹣3=0,即x2+(y﹣1)2=4,
因為 ,
所以圓(x﹣2)2+y2=4與圓x2+(y﹣1)2=4相交,
所以點P的個數(shù)為2
【解析】(1)求出圓心C到直線l的距離,利用勾股定理建立方程,即可求直線l的方程;(2)求出P的軌跡方程,利用兩圓的位置關系,即可得出結論.
科目:高中數(shù)學 來源: 題型:
【題目】在圓上任取一點,過點向軸作垂線段,垂足為,當點在圓上運動時,線段的中點的軌跡為.
(1)求曲線的方程;
(2)過點(0,-2)作直線與交于兩點,(O為原點),求三角形面積的最大值,并求此時的直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若直線ax﹣by+2=0(a>0,b>0)和函數(shù)f(x)=ax+1+1(a>0且a≠1)的圖象恒過同一個定點,則當 + 取最小值時,函數(shù)f(x)的解析式是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在下列命題中,下列選項正確的是( )
A. 在回歸直線中,變量時,變量的值一定是15.
B. 兩個變量相關性越強,則相關系數(shù)就越接近于1.
C. 在殘差圖中,殘差點比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關.
D. 若是兩個相等的非零實數(shù),則是純虛數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】目前,學案導學模式已經(jīng)成為教學中不可或缺的一部分,為了了解學案的合理使用是否對學生的期末復習有著重要的影響,我校隨機抽取100名學生,對學習成績和學案使用程度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如表所示:
已知隨機抽查這100名學生中的一名學生,抽到善于使用學案的學生概率是0.6.
參考公式:,其中 .
(1)請將上表補充完整(不用寫計算過程);
(2)試運用獨立性檢驗的思想方法有多大的把握認為學生的學習成績與對待學案的使用態(tài)度有關?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】奇函數(shù)f(x)定義域是(﹣1,0)∪(0,1),f()=0,當x>0時,總有(x)f′(x)ln(1﹣x2)>2f(x)成立,則不等式f(x)>0的解集為( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)統(tǒng)計,僅在北京地區(qū)每天就有500萬單快遞等待派送,近5萬多名快遞員奔跑在一線,快遞網(wǎng)點人員流動性也較強,各快遞公司需要經(jīng)常招聘快遞員,保證業(yè)務的正常開展.下面是50天內(nèi)甲、乙兩家快遞公司的快遞員的每天送貨單數(shù)統(tǒng)計表:
送貨單數(shù) | 30 | 40 | 50 | 60 | |
天數(shù) | 甲 | 10 | 10 | 20 | 10 |
乙 | 5 | 15 | 25 | 5 |
已知這兩家快遞公司的快遞員的日工資方案分別為:甲公司規(guī)定底薪元,每單抽成元;乙公司規(guī)定底薪元,每日前單無抽成,超過單的部分每單抽成元.
(1)分別求甲、乙快遞公司的快遞員的日工資(單位:元)與送貨單數(shù)的函數(shù)關系式;
(2)若將頻率視為概率,回答下列問題:
①記甲快遞公司的快遞員的日工資為(單位:元),求的分布列和數(shù)學期望;
②小趙擬到甲、乙兩家快遞公司中的一家應聘快遞員的工作,如果僅從日收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x2﹣bx+alnx.
(1)若b=2,函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求實數(shù)a的取值范圍;
(2)在(1)的條件下,證明:f(x2)>﹣ ;
(3)若對任意b∈[1,2],都存在x∈(1,e)(e為自然對數(shù)的底數(shù)),使得f(x)<0成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機產(chǎn)生 (I)分別求出按程序框圖正確編程運行時輸出y的值為i的概率pi(i=1,2,3);
(II)甲乙兩同學依據(jù)自己對程序框圖的理解,各自編程寫出程序重復運行n次后,統(tǒng)計記錄輸出y的值為i(i=1,2,3)的頻數(shù),以下是甲乙所作頻數(shù)統(tǒng)計表的部分數(shù)據(jù).
甲的頻數(shù)統(tǒng)計圖(部分)
運行次數(shù)n | 輸出y的值為1的頻數(shù) | 輸出y的值為2的頻數(shù) | 輸出y的值為3的頻數(shù) |
30 | 14 | 6 | 10 |
… | … | … | … |
2100 | 1027 | 376 | 697 |
乙的頻數(shù)統(tǒng)計圖(部分)
運行次數(shù)n | 輸出y的值為1的頻數(shù) | 輸出y的值為2的頻數(shù) | 輸出y的值為3的頻數(shù) |
30 | 12 | 11 | 7 |
… | … | … | … |
2100 | 1051 | 696 | 353 |
當n=2100時,根據(jù)表中的數(shù)據(jù),分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數(shù)表示),并判斷兩位同學中哪一位所編程序符合要求的可能系較大;
(III)將按程序擺圖正確編寫的程序運行3次,求輸出y的值為2的次數(shù)ξ的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com