【題目】目前,學(xué)案導(dǎo)學(xué)模式已經(jīng)成為教學(xué)中不可或缺的一部分,為了了解學(xué)案的合理使用是否對學(xué)生的期末復(fù)習(xí)有著重要的影響,我校隨機(jī)抽取100名學(xué)生,對學(xué)習(xí)成績和學(xué)案使用程度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如表所示:
已知隨機(jī)抽查這100名學(xué)生中的一名學(xué)生,抽到善于使用學(xué)案的學(xué)生概率是0.6.
參考公式:,其中 .
(1)請將上表補(bǔ)充完整(不用寫計(jì)算過程);
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法有多大的把握認(rèn)為學(xué)生的學(xué)習(xí)成績與對待學(xué)案的使用態(tài)度有關(guān)?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在1,2之間插入n個正數(shù)a1 , a2 , …,an , 使這n+2個數(shù)成等比數(shù)列,則a1a2a3…an= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點(diǎn)P(2,4)作兩條互相垂直的直線l1,l2,若l1交x軸于A點(diǎn),l2交y軸于B點(diǎn),求線段AB的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心在直線上.
(Ⅰ)若圓C與y軸相切,求圓C的方程;
(Ⅱ)當(dāng)a=0時,問在y軸上是否存在兩點(diǎn)A,B,使得對于圓C上的任意一點(diǎn)P,都有,若有,試求出點(diǎn)A,B的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,若是線段上的動點(diǎn),則下列結(jié)論不正確的是( )
A. 三棱錐的正視圖面積是定值
B. 異面直線所成的角可為
C. 三棱錐的體積大小與點(diǎn)在線段的位置有關(guān)
D. 直線與平面所成的角可為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知圓C:x2+y2﹣4x=0及點(diǎn)A(﹣1,0),B(1,2)
(1)若直線l平行于AB,與圓C相交于M,N兩點(diǎn),MN=AB,求直線l的方程;
(2)在圓C上是否存在點(diǎn)P,使得PA2+PB2=12?若存在,求點(diǎn)P的個數(shù);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=x3﹣3x在區(qū)間(a,6﹣a2)上有最小值,則實(shí)數(shù)a的取值范圍是______
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E過點(diǎn)A(2,3),對稱軸為坐標(biāo)軸,焦點(diǎn)F1,F2在x軸上,離心率,∠F1AF2的平分線所在直線為l.
(1)求橢圓E的方程;
(2)設(shè)l與x軸的交點(diǎn)為Q,求點(diǎn)Q的坐標(biāo)及直線l的方程;
(3)在橢圓E上是否存在關(guān)于直線l對稱的相異兩點(diǎn)?若存在,請找出;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P在直線x+3y﹣2=0上,點(diǎn)Q在直線x+3y+6=0上,線段PQ的中點(diǎn)為M(x0 , y0),且y0<x0+2,則 的取值范圍是( )
A.[﹣ ,0)
B.(﹣ ,0)??
C.(﹣ ,+∞)
D.(﹣∞,﹣ )∪(0,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com