【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本為,當年產(chǎn)量不足80千件時,(萬元);當年產(chǎn)量不小于80千件時,(萬元).每件商品售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部銷售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一產(chǎn)品的生產(chǎn)中所獲利潤最大,最大利潤是多少?
【答案】(1);(2)年產(chǎn)量為100千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大為1000萬元.
【解析】
(1)根據(jù)題意可以分成兩種情況進行分析討論:一是當時,二是當時,根據(jù)年利潤=銷售收入-成本,這樣可以用分段函數(shù)形式寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)分別利用配方法和基本不等式求出當時、當時,函數(shù)的最大值,通過比較,最后求出函數(shù)的最大值.
(1)∵每件商品售價為0.05萬元,∴千件商品銷售額為萬元,
①當時,根據(jù)年利潤=銷售收入-成本,
∴;
②當時,根據(jù)年利潤=銷售收入-成本,
∴.
綜①②可得,;
(2)①當時,,
∴當時,取得最大值萬元;
②當時,,當且僅當,即時,取得最大值萬元.
綜合①②,由于,∴年產(chǎn)量為100千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大為1000萬元.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=AD,點M在線段EF上。
(1)求證:BC⊥平面ACFE;
(2)若,求證:AM∥平面BDF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:左、右焦點分別為,,短軸的兩個端點分別為,,點在橢圓上,且滿足,當變化時,給出下列四個命題:①點的軌跡關(guān)于軸對稱;②存在使得橢圓上滿足條件的點僅有兩個;③的最小值為2;④最大值為,其中正確命題的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù),
(1)設函數(shù)的定義域為A
①若,,,求實數(shù)c的值.
②若,,,求M的最小值
(2)若,對任意的,存在,使得不等式成立,求實數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),(是的導函數(shù)),在上的最大值為.
(1)求實數(shù)的值;
(2)判斷函數(shù)在內(nèi)的極值點個數(shù),并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程與曲線的直角坐標方程;
(2)若與交于、兩點,點的極坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學習小組在研究性學習中,對晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關(guān)系進行研究.該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當天內(nèi)的出芽數(shù)(如圖2).
根據(jù)上述數(shù)據(jù)作出散點圖,可知綠豆種子出芽數(shù) (顆)和溫差 ()具有線性相關(guān)關(guān)系.
(1)求綠豆種子出芽數(shù) (顆)關(guān)于溫差 ()的回歸方程;
(2)假如4月1日至7日的日溫差的平均值為11,估計4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù).
附:,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com