【題目】在某校組織的一次籃球定點(diǎn)投籃比賽中,兩人一對(duì)一比賽規(guī)則如下:若某人某次投籃命中,則由他繼續(xù)投籃,否則由對(duì)方接替投籃. 現(xiàn)由甲、乙兩人進(jìn)行一對(duì)一投籃比賽,甲和乙每次投籃命中的概率分別是,.兩人共投籃3次,且第一次由甲開(kāi)始投籃. 假設(shè)每人每次投籃命中與否均互不影響.3次投籃的人依次是甲、甲、乙的概率___________;

【答案】

【解析】

由題意知兩人共投籃3次,且第一次由甲開(kāi)始投籃,每人每次投籃命中與否均互不影響,由獨(dú)立事件概率公式計(jì)算可得到結(jié)果.

由題意知兩人共投籃3次,且第一次由甲開(kāi)始投籃,每人每次投籃命中與否均互不影響,

記“3次投籃的人依次是甲、甲、乙”為事件A,由題意,得

3次投籃的人依次是甲、甲、乙的概率是

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),是拋物線上的兩個(gè)動(dòng)點(diǎn),是坐標(biāo)原點(diǎn),向量,滿足.設(shè)圓的方程為.

1)證明線段是圓的直徑;

2)當(dāng)圓的圓心到直線的距離的最小值為時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列各式極限:

1

2;

3

4;

5

6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.數(shù)列項(xiàng)和為,且滿足

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列項(xiàng)和;

(3)在數(shù)列中,是否存在連續(xù)的三項(xiàng),按原來(lái)的順序成等差數(shù)列?若存在,求出所有滿足條件的正整數(shù)的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:

是偶函數(shù);的最大值為

個(gè)零點(diǎn);在區(qū)間單調(diào)遞增.

其中所有正確結(jié)論的編號(hào)是(

A.①②B.①③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地有三家工廠,分別位于矩形ABCD的頂點(diǎn)A,B,及CD的中點(diǎn)P處,已知km,,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD的區(qū)域上(含邊界),且A,B與等距離的一點(diǎn)O處建造一個(gè)污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長(zhǎng)為ykm

I)按下列要求寫出函數(shù)關(guān)系式:

設(shè),將表示成的函數(shù)關(guān)系式;

設(shè),將表示成的函數(shù)關(guān)系式.

)請(qǐng)你選用(I)中的一個(gè)函數(shù)關(guān)系式,確定污水處理廠的位置,使三條排水管道總長(zhǎng)度最短.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查,為此需要抽驗(yàn)960人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.

方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)960.

方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來(lái)的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次;否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn),這樣,該組個(gè)人的血總共需要化驗(yàn).

假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.

1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;

2)設(shè),試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面,四邊形為菱形.

(Ⅰ)證明:平面;

(Ⅱ)若,二面角的余弦值為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,海岸公路MN的北方有一個(gè)小島A(大小忽略不計(jì))盛產(chǎn)海產(chǎn)品,在公路MNB處有一個(gè)海產(chǎn)品集散中心,點(diǎn)CB的正西方向10處,,,計(jì)劃開(kāi)辟一條運(yùn)輸線將小島的海產(chǎn)品運(yùn)送到集散中心.現(xiàn)有兩種方案:①沿線段AB開(kāi)辟海上航線:②在海岸公路MN上選一點(diǎn)P建一個(gè)碼頭,先從海上運(yùn)到碼頭,再公路MN運(yùn)送到集散中心.已知海上運(yùn)輸、岸上運(yùn)輸費(fèi)用分別為400/200/.

1)求方案①的運(yùn)輸費(fèi)用;

2)請(qǐng)確定P點(diǎn)的位置,使得按方案②運(yùn)送時(shí)運(yùn)輸費(fèi)用最低?

查看答案和解析>>

同步練習(xí)冊(cè)答案