【題目】求下列各式極限:

1

2;

3

4;

5;

6

【答案】1;(2;(3)見(jiàn)解析;(4;(5)見(jiàn)解析;(6.

【解析】

1)在分式的分子和分母中同時(shí)除以,再利用常見(jiàn)數(shù)列的極限可求得所求極限的值;

2)利用等比數(shù)列求和公式化簡(jiǎn)分式的分子和分母,然后在分式的分子和分母中同時(shí)除以,再利用常見(jiàn)數(shù)列的極限可求得所求極限的值;

3)化簡(jiǎn)所求極限為,然后分、三種情況討論,利用常用數(shù)列的極限可求得所求極限的值;

4)在分式的分子和分母中同時(shí)除以,再利用常見(jiàn)數(shù)列的極限可求得所求極限的值;

5)在所求的分式的分子和分母中同時(shí)除以,然后分、、三種情況討論,利用常見(jiàn)數(shù)列的極限可求得所求極限的值;

6)利用等比數(shù)列求和公式化簡(jiǎn)分母,然后在分式的分子和分母中同時(shí)除以,利用常見(jiàn)數(shù)列的極限可求得所求極限的值.

1)原式;

2,,

原式

3.

當(dāng)時(shí),原極限不存在;

當(dāng)時(shí),原式

當(dāng)時(shí),原式.

綜上所述,當(dāng)時(shí),原極限不存在;當(dāng)時(shí),原式;當(dāng)時(shí),原式;

4,原式

5,則.

當(dāng)時(shí),,原式

當(dāng)時(shí),,原式;

當(dāng)時(shí),,原式.

綜上所述,當(dāng)時(shí),原式;當(dāng)時(shí),原式;當(dāng)時(shí),原式;

6,則,

所以,原式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

按照某學(xué)者的理論,假設(shè)一個(gè)人生產(chǎn)某產(chǎn)品單件成本為元,如果他賣出該產(chǎn)品的單價(jià)為元,則他的滿意度為;如果他買進(jìn)該產(chǎn)品的單價(jià)為元,則他的滿意度為.如果一個(gè)人對(duì)兩種交易(賣出或買進(jìn))的滿意度分別為,則他對(duì)這兩種交易的綜合滿意度為.

現(xiàn)假設(shè)甲生產(chǎn)AB兩種產(chǎn)品的單件成本分別為12元和5元,乙生產(chǎn)A、B兩種產(chǎn)品的單件成本分別為3元和20元,設(shè)產(chǎn)品AB的單價(jià)分別為元和元,甲買進(jìn)A與賣出B的綜合滿意度為,乙賣出A與買進(jìn)B的綜合滿意度為

(1)關(guān)于、的表達(dá)式;當(dāng)時(shí),求證:=;

(2)設(shè),當(dāng)、分別為多少時(shí),甲、乙兩人的綜合滿意度均最大?最大的綜合滿意度為多少?(3)(2)中最大的綜合滿意度為,試問(wèn)能否適當(dāng)選取、的值,使得同時(shí)成立,但等號(hào)不同時(shí)成立?試說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnxsinx,記fx)的導(dǎo)函數(shù)為f'x).

1)若hx)=axf'x)是(0,+∞)上的單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;

2)若x0,2π),試判斷函數(shù)fx)的極值點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是某高架橋箱梁的橫截面,它由上部路面和下部支撐箱兩部分組成.如圖2,路面寬度,下部支撐箱CDEF為等腰梯形(),且.為了保證承重能力與穩(wěn)定性,需下部支撐箱的面積為,高度為2m,若路面AB側(cè)邊CFDE底部EF的造價(jià)分別為4a千元/m,5a千元/m,6a千元/ma為正常數(shù)),

1)試用θ表示箱梁的總造價(jià)y(千元);

2)試確定cosθ的值,使總造價(jià)最低?并求最低總造價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)實(shí)數(shù),整數(shù),

(1)證明:當(dāng)時(shí), ;

(2)數(shù)列滿足, ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A、B、C是橢圓W上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).

(I)當(dāng)點(diǎn)BW的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積.

(II)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為實(shí)現(xiàn)國(guó)民經(jīng)濟(jì)新三步走的發(fā)展戰(zhàn)略目標(biāo),國(guó)家加大了扶貧攻堅(jiān)的力度.某地區(qū)在2015 年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開(kāi)始,全面實(shí)施精準(zhǔn)扶貧政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加該項(xiàng)目戶數(shù)占 2019 年貧困戶總數(shù)的比)及該項(xiàng)目的脫貧率見(jiàn)下表:

實(shí)施項(xiàng)目

種植業(yè)

養(yǎng)殖業(yè)

工廠就業(yè)

服務(wù)業(yè)

參加用戶比

脫貧率

那么年的年脫貧率是實(shí)施精準(zhǔn)扶貧政策前的年均脫貧率的(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某校組織的一次籃球定點(diǎn)投籃比賽中,兩人一對(duì)一比賽規(guī)則如下:若某人某次投籃命中,則由他繼續(xù)投籃,否則由對(duì)方接替投籃. 現(xiàn)由甲、乙兩人進(jìn)行一對(duì)一投籃比賽,甲和乙每次投籃命中的概率分別是,.兩人共投籃3次,且第一次由甲開(kāi)始投籃. 假設(shè)每人每次投籃命中與否均互不影響.3次投籃的人依次是甲、甲、乙的概率___________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二面角α1β的平面角的大小為60°,AB1上的兩個(gè)定點(diǎn),且AB2Cα,Dβ,滿足AB與平面BCD所成的角為30°,且點(diǎn)A在平面BCD上的射影H在△BCD的內(nèi)部(包括邊界),則點(diǎn)H的軌跡的長(zhǎng)度等于(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案