【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時(shí),方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.
【答案】
(1)解: = .
因?yàn)閤=2為f(x)的極值點(diǎn),所以f'(2)=0.
即 ,解得a=0.
又當(dāng)a=0時(shí),f'(x)=x(x﹣2),從而x=2為f(x)的極值點(diǎn)成立
(2)解:因?yàn)閒(x)在區(qū)間[3,+∞)上為增函數(shù),
所以 在區(qū)間[3,+∞)上恒成立.
①當(dāng)a=0時(shí),f'(x)=x(x﹣2)≥0在[3,+∞)上恒成立,所以f(x)在[3,+∞)上為增函數(shù),故a=0符合題意
②當(dāng)a≠0時(shí),由函數(shù)f(x)的定義域可知,必須有2ax+1>0對(duì)x≥3恒成立,故只能a>0,
所以2ax2+(1﹣4a)x﹣(4a2+2)≥0對(duì)x∈[3,+∞)上恒成立.
令g(x)=2ax2+(1﹣4a)x﹣(4a2+2),其對(duì)稱軸為 ,
因?yàn)閍>0所以 ,從而g(x)≥0在[3,+∞)上恒成立,只要g(3)≥0即可,
因?yàn)間(3)=﹣4a2+6a+1≥0,
解得 .
因?yàn)閍>0,所以 .
由①可得,a=0時(shí),符合題意;
綜上所述,a的取值范圍為[0, ]
(3)解:若 時(shí),方程 x>0 可化為, .
問題轉(zhuǎn)化為b=xlnx﹣x(1﹣x)2+x(1﹣x)=xlnx+x2﹣x3在(0,+∞)上有解,
即求函數(shù)g(x)=xlnx+x2﹣x3的值域.
以下給出兩種求函數(shù)g(x)值域的方法:
方法1:因?yàn)間(x)=x(lnx+x﹣x2),令h(x)=lnx+x﹣x2(x>0),
則 ,
所以當(dāng)0<x<1,h′(x)>0,從而h(x)在(0,1)上為增函數(shù),
當(dāng)x>1,h′(x)<0,從而h(x')在(1,+∞上為減函數(shù),
因此h(x)≤h(1)=0.
而x>1,故b=xh(x)≤0,
因此當(dāng)x=1時(shí),b取得最大值0.
方法2:因?yàn)間(x)=x(lnx+x﹣x2),所以g'(x)=lnx+1+2x﹣3x2.
設(shè)p(x)=lnx+1+2x﹣3x2,則 .
當(dāng) 時(shí),p'(x)>0,所以p(x)在 上單調(diào)遞增;
當(dāng) 時(shí),p'(x)<0,所以p(x)在 上單調(diào)遞減;
因?yàn)閜(1)=0,故必有 ,又 ,
因此必存在實(shí)數(shù) 使得g'(x0)=0,
∴當(dāng)0<x<x0時(shí),g′(x)<0,所以g(x)在(0,x0)上單調(diào)遞減;
當(dāng)x0<x<1,g′(x)>0,所以,g(x)在(x0,1)上單調(diào)遞增;
又因?yàn)? ,
當(dāng)x→0時(shí),lnx+ <0,則g(x)<0,又g(1)=0.
因此當(dāng)x=1時(shí),b取得最大值0
【解析】(1)先對(duì)函數(shù)求導(dǎo),由x=2為f(x)的極值點(diǎn),可得f'(2)=0,代入可求a(2)由題意可得 在區(qū)間[3,+∞)上恒成立,①當(dāng)a=0時(shí),容易檢驗(yàn)是否符合題意,②當(dāng)a≠0時(shí),由題意可得必須有2ax+1>0對(duì)x≥3恒成立,則a>0,從而2ax2+(1﹣4a)x﹣(4a2+2)≥0對(duì)x∈[3,+∞0上恒成立.考查函數(shù)g(x)=2ax2+(1﹣4a)x﹣(4a2+2),結(jié)合二次函數(shù)的性質(zhì)可求(3)由題意可得 .問題轉(zhuǎn)化為b=xlnx﹣x(1﹣x)2+x(1﹣x)=xlnx+x2﹣x3在(0,+∞)上有解,即求函數(shù)g(x)=xlnx+x2﹣x3的值域.
方法1:構(gòu)造函數(shù)g(x)=x(lnx+x﹣x2),令h(x)=lnx+x﹣x2(x>0),對(duì)函數(shù)h(x)求導(dǎo),利用導(dǎo)數(shù)判斷函數(shù)h(x)的單調(diào)性,進(jìn)而可求
方法2:對(duì)函數(shù)g(x)=x(lnx+x﹣x2)求導(dǎo)可得g'(x)=lnx+1+2x﹣3x2 . 由導(dǎo)數(shù)知識(shí)研究函數(shù)p(x)=lnx+1+2x﹣3x2 , 的單調(diào)性可求函數(shù)g(x)的零點(diǎn),即g'(x0)=0,從而可得函數(shù)g(x)的單調(diào)性,結(jié)合 ,可知x→0時(shí),lnx+ <0,則g(x)<0,又g(1)=0可求b的最大值
【考點(diǎn)精析】通過靈活運(yùn)用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;極值反映的是函數(shù)在某一點(diǎn)附近的大小情況即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國(guó)歷史上一部影響巨大的著作,它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對(duì)推動(dòng)漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個(gè),問該若干?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )
A. 120 B. 84 C. 56 D. 28
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)= sin(2x﹣ )+1的圖象向左平移 個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有性質(zhì) . (填入所有正確性質(zhì)的序號(hào))
①最大值為 ,圖象關(guān)于直線x= 對(duì)稱;
②在(﹣ ,0)上單調(diào)遞增,且為偶函數(shù);
③最小正周期為π.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對(duì)任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù).
(Ⅰ)若是奇函數(shù),求的值.
(Ⅱ)當(dāng)時(shí),求函數(shù)在上的值域,判斷函數(shù)在上是否為有界函數(shù),并說明理由.
(Ⅲ)若函數(shù)在上是以為上界的函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知圓圓心為,過點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn)、.
()求的取值范圍;
()是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】父親節(jié)小明給爸爸從網(wǎng)上購買了一雙運(yùn)動(dòng)鞋,就在父親節(jié)的當(dāng)天,快遞公司給小明打電話話說鞋子已經(jīng)到達(dá)快遞公司了,馬上可以送到小明家,到達(dá)時(shí)間為晚上6點(diǎn)到7點(diǎn)之間,小明的爸爸晚上5點(diǎn)下班之后需要坐公共汽車回家,到家的時(shí)間在晚上5點(diǎn)半到6點(diǎn)半之間。求小明的爸爸到家之后就能收到鞋子的概率(快遞員把鞋子送到小明家的時(shí)候,會(huì)把鞋子放在小明家門口的“豐巢”中)為 __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線l1過點(diǎn)A(0,1),l2過點(diǎn)B(5,0),如果l1∥l2,且l1與l2的距離為5,求直線l1與l2的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com