已知函數(shù).
(1) 當時,求函數(shù)的單調(diào)區(qū)間;
(2) 當時,函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)的取值范圍.
(3) 求證:,(其中,是自然對數(shù)的底).
(1) 函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2) .(3)詳見解析.

試題分析:本小題主要通過函數(shù)與導數(shù)綜合應用問題,具體涉及到用導數(shù)來研究函數(shù)的單調(diào)性等知識內(nèi)容,考查考生的運算求解能力,推理論證能力,其中重點對導數(shù)對函數(shù)的描述進行考查,本題是一道難度較高且綜合性較強的壓軸題,也是一道關于數(shù)列拆分問題的典型例題,對今后此類問題的求解有很好的導向作用. (1)代入的值,明確函數(shù)解析式,并注明函數(shù)的定義域,然后利用求導研究函數(shù)的單調(diào)性;(2)利用構造函數(shù)思想,構造,然后利用轉化思想,將問題轉化為只需,下面通過對進行分類討論進行研究函數(shù)的單調(diào)性,明確最值進而確定的取值范圍.(3)首先利用裂項相消法將不等式的坐標進行拆分和整理,然后借助第二問的結論進行放縮證明不等式.
試題解析::(1) 當時,
,
解得,由解得.
故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.          (4分)
(2) 因函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),
則當時,不等式恒成立,即恒成立,、
(),只需即可.

(i) 當時, ,
時,,函數(shù)上單調(diào)遞減,故成立. 
(ii) 當時,由,因,所以,
① 若,即時,在區(qū)間上,,
則函數(shù)上單調(diào)遞增,上無最大值,當時,  ,此時不滿足條件;
② 若,即時,函數(shù)上單調(diào)遞減,
在區(qū)間上單調(diào)遞增,同樣上無最大值,當時, ,不滿足條件.
(iii) 當時,由,∵,∴,
,故函數(shù)上單調(diào)遞減,故成立.
綜上所述,實數(shù)a的取值范圍是.                             (8分)
(3) 據(jù)(2)知當時,上恒成立
(或另證在區(qū)間上恒成立),
,
因此



.
.                     (12分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若,求的極大值;
(Ⅱ)若在定義域內(nèi)單調(diào)遞減,求滿足此條件的實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知
(Ⅰ)求的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)上只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),其中為正實數(shù),.
(I)若的一個極值點,求的值;
(II)求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(I)若處取得極值,
①求、的值;②存在,使得不等式成立,求的最小值;
(II)當時,若上是單調(diào)函數(shù),求的取值范圍.(參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若函數(shù)上單調(diào)遞增,那么實數(shù)的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).若,求的值;當時,求的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知在R上可導,且,則的大小關系是(     )
A.B.
C.D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),為自然對數(shù)的底數(shù)).
(1)求函數(shù)的最小值;
(2)若≥0對任意的恒成立,求實數(shù)的值;
(3)在(2)的條件下,證明:

查看答案和解析>>

同步練習冊答案