【題目】已知{an}是遞增的等差數(shù)列,a1 , a2是方程x2﹣4x+3=0的兩根.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{ }的前n項(xiàng)和Sn .
【答案】
(1)解:∵{an}是遞增的等差數(shù)列,∴a1<a2,
又a1,a2是方程x2﹣4x+3=0的兩根,∴解方程,得a1=1,a2=3,
∴d=a2﹣a1=3﹣1=2,
∴an=1+(n﹣1)×2=2n﹣1
(2)解: = = ,
∴Sn= (1﹣ )
= (1﹣ )=
【解析】(1)由a1<a2 , a1 , a2是方程x2﹣4x+3=0的兩根,求出a1=1,a2=3,由此利用等差數(shù)列的性質(zhì)能求出數(shù)列{an}的通項(xiàng)公式.(2)由 = = ,利用裂項(xiàng)求和法能求出數(shù)列{ }的前n項(xiàng)和Sn .
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,需要了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于0<a<1,給出下列四個(gè)不等式( )
①loga(1+a)<loga(1+ );
②loga(1+a)<loga(1+ );
③a1+a<a ;
④a1+a<a ;
其中成立的是( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若實(shí)數(shù)a,b滿足f(a)=0,g(b)=0,則( )
A.0<g(a)<f(b)
B.f(b)<g(a)<0
C.f(b)<0<g(a)
D.g(a)<0<f(b)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0.
(1)當(dāng)a=﹣ ,c= 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)c= +1時(shí),若f(x)≥ 對(duì)x∈(c,+∞)恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)函數(shù)f(x)的圖象在點(diǎn)P(x1 , f(x1))、Q(x2 , f(x2))兩處的切線分別為l1、l2 . 若x1= ,x2=c,且l1⊥l2 , 求實(shí)數(shù)c的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 的展開式中,前三項(xiàng)系數(shù)成等差數(shù)列.
(1)求第三項(xiàng)的二項(xiàng)式系數(shù)及項(xiàng)的系數(shù);
(2)求含x項(xiàng)的系數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列四種說(shuō)法:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y= + 與y= 都是奇函數(shù);
④函數(shù)y=(x﹣1)2與y=2x﹣1在區(qū)間[0,+∞)上都是增函數(shù).
其中正確的序號(hào)是(把你認(rèn)為正確敘述的序號(hào)都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), 的圖像與的圖像關(guān)于軸對(duì)稱,函數(shù),若關(guān)于的不等式恒成立,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ax2+bx是定義在[a﹣1,3a]上的偶函數(shù),那么a+b的值是( )
A.﹣
B.
C.
D.﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距200千米,汽車從甲地勻速行駛到乙地,速度不得超過(guò)50千米/時(shí).已知汽車每小時(shí)的運(yùn)輸成本(以元為單位)由可變部分和固定部分組成:可變部分與速度v(千米/時(shí))的平方成正比,比例系數(shù)為0.02;固定部分為50(元/時(shí)).
(1)把全程運(yùn)輸成本y(元)表示為速度v(千米/時(shí))的函數(shù),并指出定義域;
(2)用單調(diào)性定義證明(1)中函數(shù)的單調(diào)性,并指出汽車應(yīng)以多大速度行駛可使全程運(yùn)輸成本最小?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com