【題目】已知)的方格表中的每個(gè)元素都是絕對值不大于1的實(shí)數(shù),且方格表中所有元素之和等于0,試求最小的非負(fù)實(shí)數(shù),使得每個(gè)這樣的方格表中必有一行或一列,其元素之和的絕對值不大于

【答案】

【解析】

首先,考慮方格表

該方格表中前行,前列中元素之和均等于

行,后列中的元素之和的絕對值均等于

因此,

另一方面,設(shè)一方格表滿足題設(shè)條件,且每行、每列之和的絕對值都大于

不妨設(shè)前行每行元素之和都大于

于是,前行的總和大于

子表的每列元素之和的絕對值都不大于,

故必有列每列元素之和為正,其所在的原方格表的列元素之和也是正的.

不妨設(shè)前列每列元素之和為正(從而大于).

再注意到左上角的方塊和右下角的方塊中元素之和的絕對值分別不大于,最后得到方格表元素之和大于

,矛盾.

綜上,所求最小的非負(fù)實(shí)數(shù)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C以點(diǎn)為圓心,且被直線截得的弦長為.

1)求圓C的標(biāo)準(zhǔn)方程;

2)若直線l經(jīng)過點(diǎn),且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知100條線段的長度集合,試求從這些線段中任取三條線段能夠構(gòu)成三角形的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過頂點(diǎn)在原點(diǎn)、對稱軸為軸的拋物線上的點(diǎn)作斜率分別為的直線,分別交拋物線兩點(diǎn).

1)求拋物線的標(biāo)準(zhǔn)方程和準(zhǔn)線方程;

2)若,證明:直線恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求所有的由實(shí)數(shù)構(gòu)成的有限集合,使得,且對中的任意四個(gè)不同的元素、、都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正整數(shù)數(shù)列滿足對任意的正整數(shù)均有,證明存在無窮多個(gè)正整數(shù)對),使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的非負(fù)半軸重合,若曲線極坐標(biāo)系方程為

,直線的參數(shù)方程為為參數(shù)).

(1)求曲線的直角坐標(biāo)方程與直線的普通方程;

(2)設(shè)點(diǎn)直線與曲線交于兩點(diǎn), 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

平面直角坐標(biāo)系中,射線,曲線的參數(shù)方程為為參數(shù)),曲線的方程為;以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.曲線的極坐標(biāo)方程為.

(Ⅰ)寫出射線的極坐標(biāo)方程以及曲線的普通方程;

(Ⅱ)已知射線交于,,與交于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班級(jí)的全體學(xué)生平均分成個(gè)小組,且每個(gè)小組均有名男生和多名女生.現(xiàn)從各個(gè)小組中隨機(jī)抽取一名同學(xué)參加社區(qū)服務(wù)活動(dòng),若抽取的名學(xué)生中至少有一名男生的概率為,則(

A.該班級(jí)共有名學(xué)生

B.第一小組的男生甲被抽去參加社區(qū)服務(wù)的概率為

C.抽取的名學(xué)生中男女生數(shù)量相同的概率是

D.設(shè)抽取的名學(xué)生中女生數(shù)量為,則

查看答案和解析>>

同步練習(xí)冊答案