【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),證明: (其中e為自然對(duì)數(shù)的底數(shù)).

【答案】(1)當(dāng)時(shí), 的遞增區(qū)間為;

當(dāng)時(shí),的遞增區(qū)間為,,遞減區(qū)間為;

當(dāng)時(shí),的遞增區(qū)間為,遞減區(qū)間為

(2)見(jiàn)解析

【解析】

1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論的取值范圍,求出函數(shù)的單調(diào)區(qū)間即可.

2)問(wèn)題轉(zhuǎn)化為,令 ,根據(jù)函數(shù)的單調(diào)性證明即可.

1)由題意,函數(shù)的定義域?yàn)?/span>,

當(dāng)時(shí),恒成立,故的遞增區(qū)間為;

當(dāng)時(shí),在區(qū)間,時(shí),時(shí),

所以的遞增區(qū)間為,遞減區(qū)間為;

當(dāng)時(shí),在區(qū)間,時(shí),時(shí)

所以的遞增區(qū)間為,,遞減區(qū)間為

綜上所述,當(dāng)時(shí), 的遞增區(qū)間為;

當(dāng)時(shí),的遞增區(qū)間為,,遞減區(qū)間為;

當(dāng)時(shí),的遞增區(qū)間為,遞減區(qū)間為

2)當(dāng)時(shí),由,只需證明.

,.

設(shè),則.

當(dāng)時(shí),,單調(diào)遞減;

當(dāng)時(shí),單調(diào)遞增,

∴當(dāng)時(shí),取得唯一的極小值,也是最小值.

的最小值是 成立.

成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了確定下一年度投入某種產(chǎn)品的宣傳費(fèi)用,需了解年宣傳費(fèi)(單位:萬(wàn)元)對(duì)年銷量(單位:噸)和年利潤(rùn)(單位:萬(wàn)元)的影響對(duì)近6年宣傳費(fèi)和年銷量的數(shù)據(jù)做了初步統(tǒng)計(jì),得到如下數(shù)據(jù):

年份

2013

2014

2015

2016

2017

2018

年宣傳費(fèi)(萬(wàn)元)

38

48

58

68

78

88

年銷售量(噸)

16.8

18.8

20.7

22.4

24.0

25.5

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬(wàn)元)與年銷售量(噸)之間近似滿足關(guān)系式,兩邊取對(duì)數(shù),即,令,即對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:

75.3

24.6

18.3

101.4

1)從表中所給出的6年年銷售量數(shù)據(jù)中任選2年做年銷售量的調(diào)研,求所選數(shù)據(jù)中至多有一年年銷售量低于21噸的概率.

2)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

3)若生產(chǎn)該產(chǎn)品的固定成本為200(萬(wàn)元),且每生產(chǎn)1(噸)產(chǎn)品的生產(chǎn)成本為20(萬(wàn)元)(總成本=固定成本+生產(chǎn)成本+年宣傳費(fèi)),銷售收入為(萬(wàn)元),假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),2019年該公司計(jì)劃投入108萬(wàn)元宣傳費(fèi),你認(rèn)為該決策合理嗎?請(qǐng)說(shuō)明理由.(其中為自然對(duì)數(shù)的底數(shù),

附:對(duì)于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直四棱柱的底面是菱形,,,EM,N分別是,,的中點(diǎn).

1)證明:平面

2)求點(diǎn)C到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國(guó)申辦年足球世界杯的態(tài)度,隨機(jī)選取了位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

合計(jì)

男性市民

女性市民

合計(jì)

(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)利用(1)完成的表格數(shù)據(jù)回答下列問(wèn)題:

(i)能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為支持申辦足球世界杯與性別有關(guān);

(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機(jī)抽取人,求至多有位老師的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)當(dāng)時(shí),若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在 △ABC 中,設(shè) a,b,c 分別是角 A,B,C 的對(duì)邊,已知向量 = (a,sinC-sinB),= (b + c,sinA + sinB),且

(1) 求角 C 的大小

(2) 若 c = 3, 求 △ABC 的周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)產(chǎn)品x件的總成本c(x)=1200+ x3(萬(wàn)元),已知產(chǎn)品單價(jià)P(萬(wàn)元)與產(chǎn)品件數(shù)x滿足:p2= ,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬(wàn)元.

(1)設(shè)產(chǎn)量為x件時(shí),總利潤(rùn)為L(zhǎng)(x)(萬(wàn)元),求L(x)的解析式;

(2)產(chǎn)量x定為多少件時(shí)總利潤(rùn)L(x)(萬(wàn)元)最大?并求最大值(精確到1萬(wàn)元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解中學(xué)生對(duì)交通安全知識(shí)的掌握情況,從農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)各選取100名同學(xué)進(jìn)行交通安全知識(shí)競(jìng)賽.下圖1和圖2分別是對(duì)農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)參加競(jìng)賽的學(xué)生成績(jī)按,,,分組,得到的頻率分布直方圖.

(Ⅰ)分別估算參加這次知識(shí)競(jìng)賽的農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)的平均成績(jī);

(Ⅱ)完成下面列聯(lián)表,并回答是否有的把握認(rèn)為“農(nóng)村中學(xué)和城鎮(zhèn)中學(xué)的學(xué)生對(duì)交通安全知識(shí)的掌握情況有顯著差異”?

成績(jī)小于60分人數(shù)

成績(jī)不小于60分人數(shù)

合計(jì)

農(nóng)村中學(xué)

城鎮(zhèn)中學(xué)

合計(jì)

附:

臨界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,ABBC,E、F分別為A1C1和BC的中點(diǎn)

(1)求證:平面ABE平面B1BCC1;

(2)求證:C1F//平面ABE

查看答案和解析>>

同步練習(xí)冊(cè)答案