【題目】在 △ABC 中,設(shè) a,b,c 分別是角 A,B,C 的對(duì)邊,已知向量 = (a,sinC-sinB),= (b + c,sinA + sinB),且
(1) 求角 C 的大小
(2) 若 c = 3, 求 △ABC 的周長(zhǎng)的取值范圍.
【答案】(1); (2).
【解析】
(1)利用正弦定理將正弦化為邊,進(jìn)而利用余弦定理,即可得解;
(2)由正弦定理得,從而得△ABC 的周長(zhǎng)為:a+ b+c=,結(jié)合的范圍即可得解.
(1)由,得:a(sinA + sinB)=(b + c)(sinC-sinB)
由正弦定理,得:a(a+ b)=(b + c)(c-b)
化為:a2+b2-c2=-ab,由余弦定理,得:cosC=-,
所以,C=
(2)因?yàn)镃=,所以,B=-A,由B>0,得:0<A<,
由正弦定理,得:,
△ABC 的周長(zhǎng)為:a+ b+c==
==,
由0<A<,得:,
所以,周長(zhǎng)C=∈.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為中國(guó)傳統(tǒng)智力玩具魯班鎖,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即樟卯結(jié)構(gòu))嚙合,外觀看是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱,六根完全相同的正四棱柱分成三組,經(jīng)90°榫卯起來.現(xiàn)有一魯班鎖的正四校柱的底面正方形邊長(zhǎng)為1,欲將其放入球形容器內(nèi)(容器壁的厚度忽略不計(jì)),若球形容器表面積的最小值為30π,則正四棱柱的高為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C對(duì)應(yīng)邊分別為a、b、c.
(1)若a=14,b=40,cosB=,求cosC;
(2)若a=3,b=,B=2A,求c的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線-=1(a>0,b>0)的離心率為2,焦點(diǎn)到漸近線的距離等于,過右焦點(diǎn)F2的直線l交雙曲線于A,B兩點(diǎn),F1為左焦點(diǎn).
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年2月22日,在韓國(guó)平昌冬奧會(huì)短道速滑男子米比賽中,中國(guó)選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國(guó)代表隊(duì)奪得了本屆冬奧會(huì)的首枚金牌,也創(chuàng)造了中國(guó)男子冰上競(jìng)速項(xiàng)目在冬奧會(huì)金牌零的突破.根據(jù)短道速滑男子米的比賽規(guī)則,運(yùn)動(dòng)員自出發(fā)點(diǎn)出發(fā)進(jìn)入滑行階段后,每滑行一圈都要依次經(jīng)過個(gè)直道與彎道的交接口.已知某男子速滑運(yùn)動(dòng)員順利通過每個(gè)交接口的概率均為,摔倒的概率均為.假定運(yùn)動(dòng)員只有在摔倒或到達(dá)終點(diǎn)時(shí)才停止滑行,現(xiàn)在用表示該運(yùn)動(dòng)員滑行最后一圈時(shí)在這一圈內(nèi)已經(jīng)順利通過的交接口數(shù).
(1)求該運(yùn)動(dòng)員停止滑行時(shí)恰好已順利通過個(gè)交接口的概率;
(2)求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:曲線C上的點(diǎn)到直線l的距離的最小值稱為曲線C到直線l的距離,已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實(shí)數(shù)a=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市一個(gè)社區(qū)微信群“步行者”有成員100人,其中男性70人,女性30人,現(xiàn)統(tǒng)計(jì)他們平均每天步行的時(shí)間,得到頻率分布直方圖,如圖所示:
若規(guī)定平均每天步行時(shí)間不少于2小時(shí)的成員為“步行健將”,低于2小時(shí)的成員為“非步行健將”.已知“步行健將”中女性占.
(1)填寫下面列聯(lián)表,并通過計(jì)算判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“是否為‘步行健將’與性別有關(guān)”;
(2)現(xiàn)從“步行健將”中隨機(jī)選派2人參加全市業(yè)余步行比賽,求2人中男性的人數(shù)的分布列及數(shù)學(xué)期望.
參考公式:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABC—DEF中,若AB//DE,BC//EF.
(1)求證:平面ABC//平面DEF;
(2)已知是二面角C-AD-E的平面角.求證:平面ABC平面DABE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com