【題目】甲、乙兩名射擊運動員進行射擊比賽,甲的中靶概率為0.8,乙的中靶概率為0.9,求下列事件的概率:

1)兩人都中靶;

2)恰好有一人中靶;

3)兩人都脫靶;

4)至少有一人中靶.

【答案】10.72 20.26 30.02 40.98

【解析】

甲中靶”,乙中靶”.從要求的概率可知,需要先分別求A,B的對立事件的概率.并利用構建相應的事件,根據(jù)獨立事件概率計算即可得解.

甲中靶”, 乙中靶”,甲脫靶”,乙脫靶”,由于兩個人射擊的結果互不影響,所以AB相互獨立,A,B,都相互獨立

由已知可得,.

1兩人都中靶”,由事件獨立性的定義

2恰好有一人中靶,互斥

根據(jù)概率的加法公式和事件獨立性定義,

3)事件兩人都脫靶,

所以

4)方法1:事件至少有一人中靶,AB,兩兩互斥,

所以

方法2:由于事件至少有一人中靶的對立事件是兩人都脫靶

根據(jù)對立事件的性質,得事件至少有一人中靶的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設定義在上的函數(shù)滿足:對于任意的、,當時,都有.

(1)若,求的取值范圍;

(2)若為周期函數(shù),證明:是常值函數(shù);

(3)設恒大于零,是定義在上、恒大于零的周期函數(shù),的最大值.

函數(shù). 證明:“是周期函數(shù)”的充要條件是“是常值函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f()=f(x1)-f(x2),且當x>1時,f(x)<0.

(1)求f(1)的值;

(2)判斷f(x)的單調性;

(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,且離心率為,直線過點,是橢圓上關于對稱的兩點.

(1)求橢圓的標準方程;

(2)求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線的焦點的直線(傾斜角為銳角)交拋物線于兩點,若為線段的中點,連接并延長交拋物線于點,已知,則直線的斜率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假定生男孩和生女孩是等可能的,令{一個家庭中既有男孩又有女孩},{一個家庭中最多有一個女孩}.對下述兩種情形,討論的獨立性.

1)家庭中有兩個小孩;

2)家庭中有三個小孩.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,若關于的方程恰好有個不相等的實數(shù)解,則實數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為調查某小區(qū)居民的“幸福度”。現(xiàn)從所有居民中隨機抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分數(shù)(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉),若幸福度分數(shù)不低于8.5分,則稱該人的幸福度為“幸福”。

(1)求從這16人中隨機選取3人,至少有2人為“幸!钡母怕;

(2)以這16人的樣本數(shù)據(jù)來估計整個小區(qū)的總體數(shù)據(jù),若從該小區(qū)(人數(shù)很多)任選3人,記表示抽到“幸!钡娜藬(shù),求的分布列及數(shù)學期望和方差。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是函數(shù)定義域的一個子集,若存在,使得成立,則稱的一個“準不動點”,也稱在區(qū)間上存在準不動點,已知,.

(1)若,求函數(shù)的準不動點;

(2)若函數(shù)在區(qū)間上存在準不動點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案