【題目】已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f()=f(x1)-f(x2),且當(dāng)x>1時(shí),f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性;
(3)若f(3)=-1,解不等式f(|x|)<-2.
【答案】(1)0
(2)函數(shù)f(x)在區(qū)間(0,+∞)上是減函數(shù)
(3){x|x>9或x<-9}
【解析】解:(1)令x1=x2>0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.
(2)任取x1,x2∈(0,+∞),且x1>x2,則>1.
由于當(dāng)x>1時(shí),f(x)<0,所以f()<0,即f(x1)-f(x2)<0,
因此f(x1)<f(x2),所以函數(shù)f(x)在區(qū)間(0,+∞)上是減函數(shù).
(3)令x1=9,x2=3,由f()=f(x1)-f(x2),得f()=f(9)-f(3),
而f(3)=-1,所以f(9)=-2.
由于函數(shù)f(x)在區(qū)間(0,+∞)上是減函數(shù),
所以f(|x|)<f(9),即|x|>9,解得x>9或x<-9,
因此原不等式的解集為{x|x>9或x<-9}.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)y=f(x)的圖象關(guān)于點(diǎn) 成中心對(duì)稱,對(duì)任意的實(shí)數(shù)x都有f(x)=﹣f(x+ ),且f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)+f(3)+…+f(2014)的值為( )
A.2
B.1
C.﹣1
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)的定義域?yàn)镽,且滿足
(1)f(1)=3
(2)對(duì)于任意的,總有
(3)對(duì)于任意的
(I)求f(0)及f(-1)的值
(II)求證:函數(shù)y=f(x)-1為奇函數(shù)
(III)若,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則f(x)的單調(diào)遞減區(qū)間為( )
A.(kπ﹣ ,kπ+ ,),k∈z
B.(2kπ﹣ ,2kπ+ ),k∈z
C.(k﹣ ,k+ ),k∈z
D.( ,2k+ ),k∈z
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)= (|x﹣a2|+|x﹣2a2|﹣3a2),若x∈R,f(x﹣1)≤f(x),則實(shí)數(shù)a的取值范圍為( )
A.[﹣ , ]
B.[﹣ , ]
C.[﹣ , ]
D.[﹣ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)是這樣定義的:對(duì)于任意整數(shù)m,當(dāng)實(shí)數(shù)x滿足不等式|x﹣m|< 時(shí),有f(x)=m.
(1)求函數(shù)f(x)的定義域D,并畫出它在x∈D∩[0,3]上的圖象;
(2)若數(shù)列an=2+10( )n , 記Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若對(duì)任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項(xiàng)和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項(xiàng)a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對(duì)任意的等差數(shù)列{an},總存在兩個(gè)“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于數(shù)列{an},若an+2﹣an=d(d是與n無(wú)關(guān)的常數(shù),n∈N*),則稱數(shù)列{an}叫做“弱等差數(shù)列”,已知數(shù)列{an}滿足:a1=t,a2=s且an+an+1=an+b對(duì)于n∈N*恒成立,(其中t,s,a,b都是常數(shù)).
(1)求證:數(shù)列{an}是“弱等差數(shù)列”,并求出數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)t=1,s=3時(shí),若數(shù)列{an}是等差數(shù)列,求出a、b的值,并求出{an}的前n項(xiàng)和Sn;
(3)若s>t,且數(shù)列{an}是單調(diào)遞增數(shù)列,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=ax2-(3a-1)x+a2在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com