已知f(x)=sin2x-2sin2x
(1)求f(x)的最大值及取得最大值時x取值的集合;
(2)求f(x)的單調(diào)遞增區(qū)間.
考點:三角函數(shù)中的恒等變換應(yīng)用,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)利用二倍角公式和兩角和公式對函數(shù)解析式化簡,根據(jù)是正弦函數(shù)的性質(zhì)求得函數(shù)的最大值,及此時x的集合.
(2)利用正弦函數(shù)的單調(diào)性求得函數(shù)的單調(diào)增區(qū)間.
解答: 解:(1)f(x)=sin2x-2sin2x=sin2x-1+cos2x=
2
sin(2x+
π
4
)-1,
當(dāng)2x+
π
4
=2kπ+
π
2
時,即x=kπ+
π
8
時,k∈Z,函數(shù)有最大值
2
-1.
∴函數(shù)的最大值為
2
-1,此時x的集合為{x|x=kπ+
π
8
,k∈Z}.
(2)當(dāng)2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
時,k∈Z,kπ-
8
≤x≤kπ+
π
8

∴f(x)的單調(diào)遞增區(qū)間為[kπ-
8
,kπ+
π
8
](k∈Z).
點評:本題主要考查了三角函數(shù)恒等變換的應(yīng)用,三角函數(shù)圖象與性質(zhì).考查了學(xué)生對數(shù)形結(jié)合思想的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+x2,h(x)=x2-2ax-2alnx
(1)若x=1是函數(shù)h(x)的極值點,求a的值;
(2)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實數(shù)a的取值范圍;
(3)在(2)的條件下,若a>1,h(x)=e3x-3aex,x∈[0,ln2],求h(x)的極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3+3ax2+bx+a2在x=-1時有極值0,求常數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的方程為kx-y-k+3=0,若直線l與x軸、y軸的正半軸分別交于A、B兩點,設(shè)△ABO的面積為S,當(dāng)S取得最小值時,求此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為數(shù)列{an}的前n項和,已知a1≠0,Sn=
2an
a1
-1,n∈N*
(1)求a1,a2,并求數(shù)列{an}的通項公式;
(2)求數(shù)列{nan}前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c,若x=-2時,y=f(x)有極值.y=f(x)在(1,f(1))處的切線l不過第四象限且斜率為3,又坐標(biāo)原點到切線l的距離為
10
10

(1)求函數(shù)f(x)的解析式.
(2)若函數(shù)y=f(x)的圖象與直線y=m有三個不同的公共點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
x+1
,若數(shù)列{an}(n∈N*)滿足:a1=1,an+1=f(an
(1)設(shè)bn=
1
an
,求證數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列{cn}滿足:cn=
2n
an
,求數(shù)列{cn}的前n項的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x+1
(1)求函數(shù)f(x)的最小正周期;
(2)若f(θ)=
5
6
,θ∈(
π
3
,
12
),求sin2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
3
x3-x2-3x-1的圖象與x軸交點個數(shù)為
 
個.

查看答案和解析>>

同步練習(xí)冊答案