【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過(guò)點(diǎn),它的一個(gè)焦點(diǎn)與拋物線E的焦點(diǎn)重合,斜率為k的直線l交拋物線EA、B兩點(diǎn),交橢圓C、D兩點(diǎn).

(1)求橢圓的方程;

(2)直線l經(jīng)過(guò)點(diǎn),設(shè)點(diǎn),且的面積為,求k的值;

(3)若直線l過(guò)點(diǎn),設(shè)直線,的斜率分別為,,且,成等差數(shù)列,求直線l的方程.

【答案】(1)

(2)

(3)

【解析】

1)由題知得到,解方程組即可.

2)設(shè)直線,由得:.利用弦長(zhǎng)公式和點(diǎn)到直線的距離公式即可得到,解方程即可.

3)設(shè)直線,帶入橢圓方程得到.根據(jù)韋達(dá)定理和等差中項(xiàng)的性質(zhì)得到,解方程即可求出直線方程.

(1)設(shè)橢圓的方程為

由題設(shè)得,∴.

∴橢圓的方程是.

(2)設(shè)直線,設(shè),

得:.

.

與拋物線有兩個(gè)交點(diǎn),,

.

的距離,

,所以.

,故.

(3)設(shè)直線,設(shè),

消去得:.

因?yàn)?/span>在橢圓內(nèi)部,所以與橢圓恒有兩個(gè)交點(diǎn),

所以.

,成等差數(shù)列得.

.

所以解得:.

所以直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,平面,點(diǎn)、分別在棱、上,且,,,.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足:,且對(duì)一切,均有

1)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和

3)設(shè),記數(shù)列的前項(xiàng)和為,求正整數(shù),使得對(duì)任意,均有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCDE,F分別是AB,PD的中點(diǎn),且PA=AD

(Ⅰ)求證:AF∥平面PEC;

(Ⅱ)求證:平面PEC⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的各項(xiàng)均為整數(shù),其前n項(xiàng)和為.規(guī)定:若數(shù)列滿足前r項(xiàng)依次成公差為1的等差數(shù)列,從第項(xiàng)起往后依次成公比為2的等比數(shù)列,則稱(chēng)數(shù)列為“r關(guān)聯(lián)數(shù)列”.

(1)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,求數(shù)列的通項(xiàng)公式;

(2)在(1)的條件下,求出,并證明:對(duì)任意,;

3)若數(shù)列為“6關(guān)聯(lián)數(shù)列”,當(dāng)時(shí),之間插入n個(gè)數(shù),使這個(gè)數(shù)組成一個(gè)公差為的等差數(shù)列,求,并探究在數(shù)列中是否存在三項(xiàng),其中m,kp成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項(xiàng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

給定橢圓,稱(chēng)圓心在原點(diǎn),半徑為的圓是橢圓準(zhǔn)圓”.若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到F的距離為.

I)求橢圓的方程和其準(zhǔn)圓方程;

(II )點(diǎn)P是橢圓C準(zhǔn)圓上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線,使得與橢圓C都只有一個(gè)交點(diǎn),且分別交其準(zhǔn)圓于點(diǎn)M,N.

1)當(dāng)P準(zhǔn)圓軸正半軸的交點(diǎn)時(shí),求的方程;

2)求證:|MN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了檢測(cè)某種零件的一條生產(chǎn)線的生產(chǎn)過(guò)程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)分成,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認(rèn)為該零件屬不合格的零件,其中,分別為樣本平均和樣本標(biāo)準(zhǔn)差,計(jì)算可得(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).

1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于不合格的零件;

2)工廠利用分層抽樣的方法從樣本的前組中抽出個(gè)零件,標(biāo)上記號(hào),并從這個(gè)零件中再抽取個(gè),求再次抽取的個(gè)零件中恰有個(gè)尺寸小于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中,真命題是( 。

A.和兩條異面直線都相交的兩條直線是異面直線

B.和兩條異面直線都相交于不同點(diǎn)的兩條直線是異面直線

C.和兩條異面直線都垂直的直線是異面直線的公垂線

D.、是異面直線,、是異面直線,則、是異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=lnxafx)是fx)的導(dǎo)函數(shù),若關(guān)于x的方程fx0有兩個(gè)不等的根,則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案