【題目】已知橢圓的左、右焦點(diǎn)為別為、,且過點(diǎn)和.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,點(diǎn)為橢圓上一動點(diǎn)(非長軸端點(diǎn)),的延長線與橢圓交于點(diǎn),的延長線與橢圓交于點(diǎn),求面積的最大值.
【答案】(1);(2)
【解析】
(1)將點(diǎn)和代入橢圓方程解得,即可得橢圓方程;
(2)當(dāng)的斜率不存在時,易得;當(dāng)的斜率存在時,設(shè)的方程為,聯(lián)立,得:,設(shè),利用韋達(dá)定理得,則,點(diǎn)到直線的距離是點(diǎn)到直線的距離的2倍,則,得;進(jìn)行比較,得出面積的最大值.
(1)根據(jù)題意得,將點(diǎn)和代入橢圓方程得:,
解得:,所以橢圓的方程為.
(2)由(1)得橢圓的,,
①當(dāng)的斜率不存在時,易知,
;
②當(dāng)的斜率存在時,設(shè)直線的方程為,
聯(lián)立方程組,消去得:
設(shè),,
,
點(diǎn)到直線的距離,因為是線段的中點(diǎn),所以點(diǎn)到直線的距離為,
所以
綜上,面積的最大值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義區(qū)間(m,n),,,的長度均為,其中.
(1)若關(guān)于x的不等式的解集構(gòu)成的區(qū)間的長度為,求實數(shù)a的值;
(2)求關(guān)于x的不等式的解集構(gòu)成的區(qū)間的長度的取值范圍;
(3)已知關(guān)于x的不等式組的解集構(gòu)成的各區(qū)間長度和為5,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x),g(x)滿足關(guān)系g(x)=f(x)f(x+α),其中α是常數(shù).
(1)設(shè)f(x)=cosx+sinx,,求g(x)的解析式;
(2)設(shè)計一個函數(shù)f(x)及一個α的值,使得;
(3)當(dāng)f(x)=|sinx|+cosx,時,存在x1,x2∈R,對任意x∈R,g(x1)≤g(x)≤g(x2)恒成立,求|x1-x2|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次測量中得到的A樣本數(shù)據(jù)如下:82,84,84,86,86,86,88,88,88,88.若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加2后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的是
A. 眾數(shù) B. 平均數(shù) C. 中位數(shù) D. 標(biāo)準(zhǔn)差
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品銷售價格和銷售量與銷售天數(shù)有關(guān),第x天的銷售價格(元/百斤),第x天的銷售量(百斤)(a為常數(shù)),且第7天銷售該商品的銷售收入為2009元.
(1)求第10天銷售該商品的銷售收入是多少?
(2)這20天中,哪一天的銷售收入最大?為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),且的定義域為,.
(1)求實數(shù)的值,使函數(shù)為奇函數(shù);
(2)在(1)的條件下,令,求使方程,有解的實數(shù)的取值范圍;
(3)在(1)的條件下,不等式對于任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)求曲線的普通方程;
(2)若與曲線相切,且與坐標(biāo)軸交于兩點(diǎn),求以為直徑的圓的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與軸交于點(diǎn),與曲線交于點(diǎn),且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究學(xué)生的數(shù)學(xué)核心素養(yǎng)與抽象能力(指標(biāo))、推理能力(指標(biāo))、建模能力(指標(biāo))的相關(guān)性,將它們各自量化為1、2、3三個等級,再用綜合指標(biāo)的值評定學(xué)生的數(shù)學(xué)核心素養(yǎng),若,則數(shù)學(xué)核心素養(yǎng)為一級;若,則數(shù)學(xué)核心素養(yǎng)為二級;若,則數(shù)學(xué)核心素養(yǎng)為三級,為了了解某校學(xué)生的數(shù)學(xué)核心素養(yǎng),調(diào)查人員隨機(jī)訪問了某校10名學(xué)生,得到如下數(shù)據(jù):
學(xué)生編號 | ||||||||||
(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同條件下綜合指標(biāo)值也相同的概率;
(2)在這10名學(xué)生中任取三人,其中數(shù)學(xué)核心素養(yǎng)等級是一級的學(xué)生人數(shù)記為,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com