【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.
(1)求曲線的普通方程;
(2)若與曲線相切,且與坐標(biāo)軸交于兩點(diǎn),求以為直徑的圓的極坐標(biāo)方程.
【答案】(1);(2)
【解析】試題分析:(1)由曲線的參數(shù)方程為(為參數(shù)),消去參數(shù)t,可得曲線的普通方程為.
(2)將化直后與曲線C聯(lián)立得,由與曲線相切,所以,,進(jìn)而可求以為直徑的圓的直角坐標(biāo)方程為,由極直互化公式可得對應(yīng)的極坐標(biāo)方程為.
試題解析:(1)由,得,
,即,
故曲線的普通方程為.
(2)由,得,
聯(lián)立得,
因?yàn)?/span>與曲線相切,所以,
所以的方程為,不妨假設(shè),則,線段的中點(diǎn)為,
所以,又,
故以為直徑的圓的直角坐標(biāo)方程為,
其對應(yīng)的極坐標(biāo)方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個命題
①“若,則互為相反數(shù)”的逆命題;
②“全等三角形的面積相等”的否命題;
③“若,則有實(shí)根”的逆否命題;
④“不等邊三角形的三個內(nèi)角相等”的逆命題.
其中真命題為_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點(diǎn) ,兩個焦點(diǎn)與短軸的一個端點(diǎn)構(gòu)成等邊三角形.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過焦點(diǎn)作 軸的垂線交橢圓上半部分于點(diǎn),過點(diǎn)作橢圓的弦,設(shè)弦 所在的直線分別交軸于、兩點(diǎn),若為等腰三角形時,問直線的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)為別為、,且過點(diǎn)和.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)如圖,點(diǎn)為橢圓上一動點(diǎn)(非長軸端點(diǎn)),的延長線與橢圓交于點(diǎn),的延長線與橢圓交于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ( x R ,且 e 為自然對數(shù)的底數(shù)).
⑴ 判斷函數(shù) f x 的單調(diào)性與奇偶性;
⑵是否存在實(shí)數(shù) t ,使不等式對一切的 x R 都成立?若存在,求出 t 的值,若 不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年某市有2萬多文科考生參加高考,除去成績?yōu)?/span>670分(含670分)以上的3人與成績?yōu)?/span>350分(不含350分)以下的3836人,還有約1.9萬文科考生的成績集中在內(nèi),其成績的頻率分布如下表所示:
分?jǐn)?shù)段 | ||||
頻率 | ||||
分?jǐn)?shù)段 | ||||
頻率 |
(1)試估計(jì)該次高考成績在內(nèi)文科考生的平均分(精確到);
(2)一考生填報(bào)志愿后,得知另外有4名同分?jǐn)?shù)考生也填報(bào)了該志愿.若該志愿計(jì)劃錄取3人,并在同分?jǐn)?shù)考生中隨機(jī)錄取,求該考生不被該志愿錄取的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面幾何中,有邊長為的正三角形內(nèi)任意點(diǎn)到三邊距離之和為定值.類比上述命題,棱長為的正四面體內(nèi)任一點(diǎn)到四個面的距離之和為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)為圓上的動點(diǎn),點(diǎn)在軸上的投影為,動點(diǎn)滿足,動點(diǎn)的軌跡為.
(1)求的方程;
(2)設(shè)與軸正半軸的交點(diǎn)為,過點(diǎn)的直線的斜率為,與交于另一點(diǎn)為.若以點(diǎn)為圓心,以線段長為半徑的圓與有4個公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)進(jìn)行籃球三分球投籃比賽,甲每次投中的概率為,乙每次投中的概率為,每人分別進(jìn)行三次投籃.
(I)記甲投中的次數(shù)為,求的分布列及數(shù)學(xué)期望;
(Ⅱ)求乙至多投中2次的概率;
(Ⅲ)求乙恰好比甲多投進(jìn)2次的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com