【題目】設(shè)為奇函數(shù),為常數(shù).
(1)求的值
(2)判斷函數(shù)在上的單調(diào)性,并說明理由;
(3)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)答案見解析(3)
【解析】
(1)因?yàn)?/span>為奇函數(shù),根據(jù)對(duì)定義域內(nèi)的任意都成立,即可求得答案;
(2)可根據(jù)定義法證明函數(shù)單調(diào)性,即在函數(shù)的定義域內(nèi)任取,且,可通過作差法比較和大小,即可得到單調(diào)性;
(3)令,因?yàn)?/span>在上是減函數(shù),由(2)知是增函數(shù),,對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,即恒成立,即可求得答案.
(1)為奇函數(shù)
對(duì)定義域內(nèi)的任意都成立
,解得或(舍去)
綜上所述,的值為.
(2)由(1)知:,
任取,設(shè),
則
綜上所述,在上是增函數(shù).
(3)令
在上是減函數(shù)
由(2)知是增函數(shù)
對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立
即恒成立
綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列對(duì)任意滿足,下面給出關(guān)于數(shù)列的四個(gè)命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國人民發(fā)出的口號(hào).某生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(jià)(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量(件) | q | 84 | 83 | 80 | 75 | 68 |
已知,.
(Ⅰ)求出的值;
(Ⅱ)已知變量,具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(jià)(元)的線性回歸方程;
(Ⅲ)用表示用(Ⅱ)中所求的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取2個(gè),求“好數(shù)據(jù)”至少有一個(gè)的概率.
(參考公式:線性回歸方程中,的最小二乘估計(jì)分別為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中a為實(shí)數(shù).
(1)當(dāng)a=-1時(shí),求函數(shù)y=f(x)的零點(diǎn);
(2)若f(x)在(-2,2)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于給定的實(shí)數(shù)a,若存在兩個(gè)不相等的實(shí)數(shù)根,,(<且≠0)使得f()=f(),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在函數(shù)(為常數(shù)),使得對(duì)函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個(gè)“線性覆蓋函數(shù)”.給出如下四個(gè)結(jié)論:
①函數(shù)存在“線性覆蓋函數(shù)”;
②對(duì)于給定的函數(shù),其“線性覆蓋函數(shù)”可能不存在,也可能有無數(shù)個(gè);
③為函數(shù)的一個(gè)“線性覆蓋函數(shù)”;
④若為函數(shù)的一個(gè)“線性覆蓋函數(shù)”,則
其中所有正確結(jié)論的序號(hào)是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,.
(1)若,,且對(duì)任意的,都有,求實(shí)數(shù)的取值范圍;
(2)若,,且在單調(diào)遞增,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過點(diǎn)作圓的切線,設(shè)切點(diǎn)為.
(1)若點(diǎn)運(yùn)動(dòng)到處,求此時(shí)切線的方程;
(2)求滿足的點(diǎn)的軌跡方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com