【題目】平面直角坐標系中,過橢圓右焦點的直線,兩點,且橢圓的離心率為.

1)求橢圓的方程;

2,上的兩點,若四邊形的對角線,求四邊形面積的最大值.

【答案】1;(2.

【解析】

1)先求出右焦點坐標為,結(jié)合離心率可得,求出后可得橢圓的方程.

2)聯(lián)立直線的方程和橢圓方程后可求的坐標,從而可求.設的方程為,聯(lián)立直線的方程和橢圓的方程,消去后利用弦長公式可得,從而可得,結(jié)合的范圍可求面積的最大值.

解:(1)橢圓的右焦點為,則.

離心率,則.

,所以的方程為.

(Ⅱ)由,解得,因此.

設直線的方程為,設,.

.

,故.

的交點在之間,故.

因為直線的斜率為1,

所以.

又四邊形的面積

時,取得最大值,最大值為,所以四邊形面積的最大值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的右焦點為點,點是虛軸的一個端點,點為雙曲線左支上的一個動點,則周長的最小值等于____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最小正周期為,函數(shù)的圖象沿軸向右平移個單位長度后關(guān)于軸對稱,則下列結(jié)論正確的是______.(填序號)

是函數(shù)圖象的一個對稱中心;

在區(qū)間上的最小值為-2;

的單調(diào)遞增區(qū)間是;

④函數(shù)的圖象與直線時只有一個交點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列結(jié)論

(1)某學校從編號依次為001,002,…,900的900個學生中用系統(tǒng)抽樣的方法抽取一個樣本,已知樣本中有兩個相鄰的編號分別為053,098,則樣本中最大的編號為862.

(2)甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲.

(3)若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)的值越接近于1.

(4)對A、B、C三種個體按3:1:2的比例進行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為30.

則正確的個數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形中,,為邊的中點,將繞直線翻轉(zhuǎn)成平面),為線段的中點,則在翻折過程中,①與平面垂直的直線必與直線垂直;②線段的長恒為③異面直線所成角的正切值為④當三棱錐的體積最大時,三棱錐外接球的體積是.上面說法正確的所有序號是(

A.①②④B.①③④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新型冠狀病毒肺炎COVID-19疫情發(fā)生以來,在世界各地逐漸蔓延.在全國人民的共同努力和各級部門的嚴格管控下,我國的疫情已經(jīng)得到了很好的控制.然而,每個國家在疫情發(fā)生初期,由于認識不足和措施不到位,感染確診人數(shù)都會出現(xiàn)加速增長.如表是小王同學記錄的某國從第一例新型冠狀病毒感染確診之日開始,連續(xù)8天每日新型冠狀病毒感染確診的累計人數(shù).

日期代碼

1

2

3

4

5

6

7

8

累計確診人數(shù)

4

8

16

31

51

71

97

122

為了分析該國累計感染確診人數(shù)的變化趨勢,小王同學分別用兩種模型:

,②對變量的關(guān)系進行擬合,得到相應的回歸方程并進行殘差分析,殘差圖如下(注:殘差,且經(jīng)過計算得,,其中,

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應該選擇哪個模型?并簡要說明理由;

2)根據(jù)(1)中選定的模型求出相應的回歸方程;

3)如果第9天該國仍未采取有效的防疫措施,試根據(jù)(2)中所求的回歸方程估計該國第9天新型冠狀病毒感染確診的累計人數(shù).(結(jié)果保留為整數(shù))

附:回歸直線的斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省的一個氣象站觀測點在連續(xù)4天里記錄的AQI指數(shù)M與當天的空氣水平可見度y(單位:cm)的情況如下表:

M

900

700

300

100

y

0.5

3.5

6.5

9.5

該省某市201912月份AQI指數(shù)M的頻數(shù)分布表如下:

M

頻數(shù)

3

6

12

6

3

(1)設,若xy之間具有線性關(guān)系,試根據(jù)上述數(shù)據(jù)求出y關(guān)于x的線性回歸方程;

(2)王先生在該市開了一家洗車店,洗車店每天的平均收入與AQI指數(shù)的相關(guān)關(guān)系如下表:

M

日均收入(元)

-2000

-1000

2000

6000

8000

估計王先生的洗車店201912月份每天的平均收入.

附參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.

1)求實數(shù)的取值范圍;

2)設兩個極值點分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)ax2(a2b)xaln x(a,bR)

()b1,求函數(shù)f(x)的單調(diào)區(qū)間;

()a=-1,b0證明:f(x)ex>x2x1(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

同步練習冊答案