【題目】將函數(shù)f(x)=2sin2x的圖象向左平移 個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實數(shù)a的取值范圍是(
A.[ , ]
B.[ , ]
C.[ ]
D.[ , ]

【答案】A
【解析】解:將函數(shù)f(x)=2sin2x的圖象向左平移 個單位后得到函數(shù)g(x)=2sin2(x+ )=2sin(2x+ )的圖象, 若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,∴a>0,0+ = ,2 + ,且 2kπ﹣ ≤22a+ ,2 + ≤2kπ+ ,k∈Z.
求得 ≤a≤ ,
故選:A.
【考點精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換的相關知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】以下幾個命題中真命題的序號為
①在空間中,m、n是兩條不重合的直線,α、β是兩個不重合的平面,如果α⊥β,α∩β=n,m⊥n,那么m⊥β;
②相關系數(shù)r的絕對值越接近于1,兩個隨機變量的線性相關性越強;
③用秦九昭算法求多項式f(x)=208+9x2+6x4+x6在x=﹣4時,v2的值為22;
④過拋物線y2=4x的焦點作直線與拋物線相交于A、B兩點,則使它們的橫坐標之和等于4的直線有且只有兩條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于x的不等式 >1+ (其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,試確定k的取值范圍;
(2)若k>1時,上述不等式的解集是x∈(3,+∞),求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知E、F、G、H為空間四邊形ABCD的邊AB、BC、CD、DA上的點,且EH∥FG.求證:
(1)EH∥面BCD;
(2)EH∥BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡外賣在市的普及情況, 市某調(diào)查機構借助網(wǎng)絡進行了關于網(wǎng)絡外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進行抽樣分析,得到表格:(單位:人)

經(jīng)常使用網(wǎng)絡外賣

偶爾或不用網(wǎng)絡外賣

合計

男性

50

50

100

女性

60

40

100

合計

110

90

200

(1)根據(jù)表中數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為市使用網(wǎng)絡外賣的情況與性別有關?

(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出3人贈送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡外賣的概率;

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用網(wǎng)絡外賣的人數(shù)為,求的數(shù)學期望和方差.

參考公式: ,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內(nèi)三個向量: =(3,2), =(﹣1,2), =(4,1) (Ⅰ)若( +k )∥(2 ),求實數(shù)k的值;
(Ⅱ)設 =(x,y),且滿足( + )⊥( ),| |= ,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和Sn=an﹣1,則關于數(shù)列{an}的下列說法中,正確的個數(shù)有(
①一定是等比數(shù)列,但不可能是等差數(shù)列
②一定是等差數(shù)列,但不可能是等比數(shù)列
③可能是等比數(shù)列,也可能是等差數(shù)列
④可能既不是等差數(shù)列,又不是等比數(shù)列
⑤可能既是等差數(shù)列,又是等比數(shù)列.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an=an1+3(n≥2,n∈N*),數(shù)列{bn}滿足bn= ,n∈N* , 則 (b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C:9x2+4y2=36,直線l: (t為參數(shù))

(Ⅰ)寫出曲線C的參數(shù)方程,直線l的普通方程;

(Ⅱ)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.

查看答案和解析>>

同步練習冊答案