【題目】已知平面內(nèi)三個(gè)向量: =(3,2), =(﹣1,2), =(4,1) (Ⅰ)若( +k )∥(2 ﹣ ),求實(shí)數(shù)k的值;
(Ⅱ)設(shè) =(x,y),且滿足( + )⊥( ﹣ ),| ﹣ |= ,求 .
【答案】解:因?yàn)? =(3,2), =(﹣1,2), =(4,1), 所以(Ⅰ) +k =(3+4k,2+k),2 ﹣ =(﹣5,2),又( +k )∥(2 ﹣ ),
所以2(3+4k)+5(2+k)=0,解得k= ;
(Ⅱ) =(x,y),且滿足( + )⊥( ﹣ ),| ﹣ |= ,又 =(2,4), =(x﹣4,y﹣1),
所以 ,解得 或
所以 =(6,0)或者(2,2)
【解析】首先將它們中的相關(guān)向量坐標(biāo)化,然后進(jìn)行向量平行、垂直的坐標(biāo)運(yùn)算.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面向量的坐標(biāo)運(yùn)算的相關(guān)知識(shí),掌握坐標(biāo)運(yùn)算:設(shè),則;;設(shè),則.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,最小正周期是π且在區(qū)間 上是增函數(shù)的是( )
A.y=sin2x
B.y=sinx
C.y=tan
D.y=cos2x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】無窮等差數(shù)列{an}的各項(xiàng)均為整數(shù),首項(xiàng)為a1、公差為d,Sn是其前n項(xiàng)和,3、21、15是其中的三項(xiàng),給出下列命題:
①對任意滿足條件的d,存在a1 , 使得99一定是數(shù)列{an}中的一項(xiàng);
②存在滿足條件的數(shù)列{an},使得對任意的n∈N* , S2n=4Sn成立;
③對任意滿足條件的d,存在a1 , 使得30一定是數(shù)列{an}中的一項(xiàng).
其中正確命題的序號(hào)為( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=2sin2x的圖象向左平移 個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[0, ]和[2a, ]上均單調(diào)遞增,則實(shí)數(shù)a的取值范圍是( )
A.[ , ]
B.[ , ]
C.[ , ]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)是定義在R上的偶函數(shù),f(0)=0,當(dāng)x>0時(shí),f(x)=log x.
(1)求 f(﹣4)的函數(shù)值;
(2)求函數(shù)f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=3,an+1+an=32n , n∈N* .
(1)證明數(shù)列{an﹣2n}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)在數(shù)列{an}中,是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng);若不存在,請說明理由;
(3)若1<r<s且r,s∈N* , 求證:使得a1 , ar , as成等差數(shù)列的點(diǎn)列(r,s)在某一直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD所在的平面與正方形ADPQ所在的平面相互垂直,E是QD的中點(diǎn). (Ⅰ)求證:QB∥平面AEC;
(Ⅱ)求證:平面QDC⊥平面AEC;
(Ⅲ)若AB=1,AD=2,求多面體ABCEQ的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com