已知函數(shù).
(1)試求函數(shù)的單調(diào)區(qū)間和極值;
(2)若 直線與曲線相交于不同兩點,若 試證明.

(1)見解析;(2)見解析.

解析試題分析:(1)求出函數(shù)導(dǎo)數(shù)令其等于零,得極值點,令導(dǎo)數(shù)大于零得增區(qū)間,令導(dǎo)數(shù)小于零得減區(qū)間;(2)由(1)知,利用兩點得,構(gòu)造,只需證明即可.
試題解析:(1),減區(qū)間是,增區(qū)間是  4分
(2),令,  
構(gòu)造函數(shù)同除 
,令,則 
,所以,所以, 12分
考點:導(dǎo)數(shù)的計算、利用導(dǎo)數(shù)求函數(shù)極值和單調(diào)區(qū)間、直線斜率計算、函數(shù)的構(gòu)造.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)=,=,若曲線和曲線都過點P(0,2),且在點P處有相同的切線
(Ⅰ)求,,,的值;
(Ⅱ)若時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),().
(1)設(shè),令,試判斷函數(shù)上的單調(diào)性并證明你的結(jié)論;
(2)若的定義域和值域都是,求的最大值;
(3)若不等式恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

己知函數(shù) .
(I)求的極大值和極小值;
(II)當(dāng)時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=alnx+(a≠0)在(0,)內(nèi)有極值.
(I)求實數(shù)a的取值范圍;
(II)若x1∈(0,),x2∈(2,+∞)且a∈[,2]時,求證:f(x2)﹣f(x1)≥ln2+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)二次函數(shù)的圖像過原點,,的導(dǎo)函數(shù)為,且,
(1)求函數(shù),的解析式;
(2)求的極小值;
(3)是否存在實常數(shù),使得若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的圖象如圖,直線在原點處與函數(shù)圖象相切,且此切線與函數(shù)圖象所圍成的區(qū)域(陰影)面積為.

(1)求的解析式;
(2)若常數(shù),求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求曲線處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間并比較的大小關(guān)系
(Ⅱ)若函數(shù)的圖象在點處的切線的傾斜角為,對于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍;
(Ⅲ)求證:。

查看答案和解析>>

同步練習(xí)冊答案