【題目】已知等差數(shù)列{an}的各項均為正數(shù),且Sn= + +…+ ,S2= ,S3= .設(shè)[x]表示不大于x的最大整數(shù)(如[2.10]=2,[0.9]=0).
(1)試求數(shù)列{an}的通項;
(2)求T=[log21]+[log22]+[log23]+…+[log2( ﹣1)]+[log2( )]關(guān)于n的表達(dá)式.
【答案】
(1)解:Sn= + +…+ = ( ﹣ ),
∵S2= ,S3= ,
∴ ( ﹣ )= , ( ﹣ )= ,
∴a1=1,d=1,
∴an=n
(2)解:T=[log21]+[log22]+[log23]+…+[log2( ﹣1)]+[log2( )]
=[log21]+[log22]+[log23]+…+[log2(2n﹣1)]+[log2(2n)]
∵[log21]=0,
[log22]=[log23]=1,
…
[log22m]=[log2(m+1)]=…=[log2(m+1﹣1)]=m.
∴[log21]+[log22]+[log23]+…+[log2(2n﹣1)]+[log2(2n)]=0+1×2+2×22+…+(n﹣1)2n﹣1+n,
由S=1×2+2×22+…+(n﹣1)2n﹣1,
則2S=1×22+2×23+…+(n﹣1)2n,
∴﹣S=1×2+1×22+…+2n﹣1﹣(n﹣1)2n= ﹣(n﹣1)2n,
∴S=(2﹣n)2n﹣2
∴T=(2﹣n)2n﹣2+n
【解析】(1)利用裂項法求和,結(jié)合S2= ,S3= ,即可求數(shù)列{an}的通項;(2)先化簡,再利用錯位相減法,即可得出結(jié)論.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點x=0處的切線為l:4x+y﹣5=0,若x=﹣2時,y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[﹣3,1]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級舉行一次知識競賽活動,活動分為初賽和決賽兩個階段,F(xiàn)將初賽答卷成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100] | ③ | ④ |
合 計 | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫出對應(yīng)空格序號的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對2道題就終止答題,并獲得一等獎。如果前三道題都答錯,就不再答第四題。某同學(xué)進入決賽,每道題答對的概率的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學(xué)恰好答滿4道題而獲得一等獎的概率;
②記該同學(xué)決賽中答題個數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司一年經(jīng)銷某種商品,年銷售量400噸,每噸進價5萬元,每噸銷售價8萬元.全年進貨若干次,每次都購買x噸,運費為每次2萬元,一年的總存儲費用為2x萬元.
(1)求該公司經(jīng)銷這種商品一年的總利潤y與x的函數(shù)關(guān)系;
(2)要使一年的總利潤最大,則每次購買量為多少?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是雙曲線 (a>0,b>0,xy≠0)上的動點,F(xiàn)1,F(xiàn)2是雙曲線的焦點,M是∠F1PF2的平分線上一點,且.某同學(xué)用以下方法研究|OM|:延長F2M交PF1于點N,可知△PNF2為等腰三角形,且M為F2N的中點,得|OM|=|NF1|=…=a。類似地:P是橢圓 (a>b>0,xy≠0)上的動點,F(xiàn)1,F(xiàn)2是橢圓的焦點,M是∠F1PF2的平分線上一點,且,則|OM|的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的中心在原點,對稱軸為坐標(biāo)軸,且長軸長是短軸長的2倍.又點P(4,1)在橢圓上,求該橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x2﹣4x+3|,x∈R.
(1)在區(qū)間[0,4]上畫出函數(shù)f(x)的圖象;
(2)寫出該函數(shù)在R上的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1、F2分別是雙曲線 ﹣ =1(a>0,b>0)的左、右焦點,以坐標(biāo)原點O為圓心,OF1為半徑的圓與雙曲線在第一象限的交點為P,則當(dāng)△PF1F2的面積等于a2時,雙曲線的離心率為( )
A.
B.
C.
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com