【題目】在平面直角坐標系xOy中,已知向量 =( ,﹣ ), =(sinx,cosx),x∈(0, ).
(1)若 ⊥ ,求tanx的值;
(2)若 與 的夾角為 ,求x的值.
【答案】
(1)解:若 ⊥ ,
則 =( ,﹣ )(sinx,cosx)= sinx﹣ cosx=0,
即 sinx= cosx
sinx=cosx,即tanx=1
(2)解:∵| |= =1,| |= =1, =( ,﹣ )(sinx,cosx)= sinx﹣ cosx,
∴若 與 的夾角為 ,
則 =| || |cos = ,
即 sinx﹣ cosx= ,
則sin(x﹣ )= ,
∵x∈(0, ).
∴x﹣ ∈(﹣ , ).
則x﹣ =
即x= + =
【解析】(1)若 ⊥ ,則 =0,結合三角函數(shù)的關系式即可求tanx的值;(2)若 與 的夾角為 ,利用向量的數(shù)量積的坐標公式進行求解即可求x的值.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中, 底面, , , , 是棱上一點.
(I)求證: .
(II)若, 分別是, 的中點,求證: ∥平面.
(III)若二面角的大小為,求線段的長
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高中生共有2700人,其中高一年級900人,高二年級1200人,高三年級600人,現(xiàn)采取分層抽樣法抽取容量為135的樣本,那么高一,高二,高三各年級抽取的人數(shù)分別為( )
A.45,75,15
B.45,45,45
C.30,90,15
D.45,60,30
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:(x﹣1)2+y2=4
(1)求過點P(3,3)且與圓C相切的直線l的方程;
(2)已知直線m:x﹣y+1=0與圓C交于A、B兩點,求|AB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2﹣a2= bc,且b= a,則下列關系一定不成立的是( )
A.a=c
B.b=c
C.2a=c
D.a2+b2=c2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為 (為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求的普通方程和的傾斜角;
(2)設點和交于兩點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com