【題目】在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2﹣a2= bc,且b= a,則下列關(guān)系一定不成立的是(
A.a=c
B.b=c
C.2a=c
D.a2+b2=c2

【答案】B
【解析】解:∵b2+c2﹣a2= bc,
∴cosA= = ,
∴A=30°,
由正弦定理化簡b= a,得到sinB= sinA= ,
∴B=60°或120°,
當(dāng)B=60°時,C=90°,此時△ABC為直角三角形,
得到a2+b2=c2 , 2a=c;
當(dāng)B=120°時,C=30°,此時△ABC為等腰三角形,
得到a=c,
綜上,b=c不一定成立,
故選:B.
【考點精析】解答此題的關(guān)鍵在于理解余弦定理的定義的相關(guān)知識,掌握余弦定理:;;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知n∈N* , 設(shè)Sn是單調(diào)遞減的等比數(shù)列{an}的前n項和,a1= 且S2+a2 , S4+a4 , S3+a3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列{nan}的前n項和為Tn , 求證:對于任意正整數(shù)n,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓x2+y2﹣2x+4y+3=0的圓心到直線x﹣y=1的距離為:( )
A.2
B.
C.1
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:函數(shù)f(x)= (a>0,且a≠1)在R上為單調(diào)遞減函數(shù),命題q:x∈[0, ],x2﹣a≤0恒成立.
(1)求命題q真時a的取值范圍;
(2)若命題p∧q為假,p∨q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,橢圓 )的離心率是,拋物線 的焦點的一個頂點.

1)求橢圓的方程;

2)設(shè)上動點,且位于第一象限, 在點處的切線交于不同的兩點, ,線段的中點為,直線與過且垂直于軸的直線交于點

i)求證:點在定直線上;

ii)直線軸交于點,記的面積為 的面積為,求的最大值及取得最大值時點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知向量 =( ,﹣ ), =(sinx,cosx),x∈(0, ).
(1)若 ,求tanx的值;
(2)若 的夾角為 ,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,四邊形是菱形, ,又平面,

是棱的中點, 在棱上,且.

(1)證明:平面平面

(2)若平面,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinx(sinx+ cosx)﹣1(其中x∈R),求:
(1)函數(shù)f(x)的最小正周期;
(2)函數(shù)f(x)的單調(diào)減區(qū)間;
(3)函數(shù)f(x)圖象的對稱軸和對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1的圓心在坐標(biāo)原點O,且恰好與直線l1:x﹣2y+3 =0相切,點A為圓上一動點,AM⊥x軸于點M,且動點N滿足 ,設(shè)動點N的軌跡為曲線C.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C相交于不同兩點A,B,且滿足 (O為坐標(biāo)原點),求線段AB長度的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案