【題目】設(shè)定義域?yàn)镽的函數(shù) (a,b為實(shí)數(shù)).
(1)若f(x)是奇函數(shù),求a,b的值;
(2)當(dāng)f(x)是奇函數(shù)時(shí),證明對(duì)任何實(shí)數(shù)x,c都有f(x)<c2﹣3c+3成立.
【答案】
(1)解:∵f(x)是定義在R上的奇函數(shù),
∴f(0)=0,
即 =0,
∴a=1,
∴ ,
∵f(1)=﹣f(﹣1),
∴ ,
∴b=2
(2)解:f(x)= = =﹣ + ,
∵2x>0,
∴2x+1>1,0< <1,
從而﹣ <f(x)< ;
而c2﹣3c+3=(c﹣ )2+ ≥ 對(duì)任何實(shí)數(shù)c成立,
∴對(duì)任何實(shí)數(shù)x、c都有f(x)<c2﹣3c+3成立
【解析】(1)利用函數(shù)是奇函數(shù),得到f(0)=0,從而建立方程可解a,b.(2)利用函數(shù)的奇偶性和指數(shù)函數(shù)的單調(diào)性,求出f(x)的最大值,和函數(shù)y=c2﹣3c+3最小值之間的關(guān)系,進(jìn)行證明即可.
【考點(diǎn)精析】本題主要考查了函數(shù)的最值及其幾何意義和函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(。┲;在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬元)對(duì)年銷售量(單位:噸)和年利潤(rùn)(單位:萬元)的影響。對(duì)近六年的年宣傳費(fèi)和年銷售量的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年宣傳費(fèi)(萬元) | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量(噸) | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬元)與年銷售量(噸)之間近似滿足關(guān)系式即。對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(2)規(guī)定當(dāng)產(chǎn)品的年銷售量(噸)與年宣傳費(fèi)(萬元)的比值在區(qū)間內(nèi)時(shí)認(rèn)為該年效益良好。現(xiàn)從這6年中任選3年,記其中選到效益良好年的數(shù)量為,試求隨機(jī)變量的分布列和期望。(其中為自然對(duì)數(shù)的底數(shù), )
附:對(duì)于一組數(shù)據(jù),其回歸直線中的斜率和截距的最小二乘估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一邊長(zhǎng)為2的正三角形ABC的兩個(gè)頂點(diǎn)A、B在平面α上,另一個(gè)頂點(diǎn)C在平面α上的射影為C',則三棱錐A﹣BC'C的體積的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形(及其內(nèi)部)以邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的, 是的中點(diǎn).
()設(shè)是上的一點(diǎn),且,求的大小;
()當(dāng)時(shí),求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)在如圖給定的直角坐標(biāo)系內(nèi)畫出f(x)的圖象;(直接畫圖,不需列表)
(2)寫出f(x)的單調(diào)遞增區(qū)間及值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知( +3x2)n的展開式中,各項(xiàng)系數(shù)和比它的二項(xiàng)式系數(shù)和大992,求:
(1)展開式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)展開式中系數(shù)最大的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)乒乓球團(tuán)體比賽的規(guī)則如下:進(jìn)行5場(chǎng)比賽,除第3場(chǎng)為雙打外,其余各場(chǎng)為單打,參賽的每個(gè)隊(duì)選出3名運(yùn)動(dòng)員參加比賽,每個(gè)隊(duì)員打兩場(chǎng),且第1,2場(chǎng)與第4,5場(chǎng)不能是某個(gè)運(yùn)動(dòng)員連續(xù)比賽.某隊(duì)有4名乒乓球運(yùn)動(dòng)員,其中 不適合雙打,則該隊(duì)教練安排運(yùn)動(dòng)員參加比賽的方法共有種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的方程為,點(diǎn)是拋物線上到直線距離最小的點(diǎn),點(diǎn)是拋物線上異于點(diǎn)的點(diǎn),直線與直線交于點(diǎn),過點(diǎn)與軸平行的直線與拋物線交于點(diǎn).
(Ⅰ)求點(diǎn)的坐標(biāo);
(Ⅱ)證明直線恒過定點(diǎn),并求這個(gè)定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)欲經(jīng)銷某種商品,考慮到不同顧客的喜好,決定同時(shí)銷售A、B兩個(gè)品牌,根據(jù)生產(chǎn)廠家營銷策略,結(jié)合本地區(qū)以往經(jīng)銷該商品的大數(shù)據(jù)統(tǒng)計(jì)分析,A品牌的銷售利潤(rùn)y1與投入資金x成正比,其關(guān)系如圖1所示,B品牌的銷售利潤(rùn)y2與投入資金x的算術(shù)平方根成正比,其關(guān)系如圖2所示(利潤(rùn)與資金的單位:萬元).
(1)分別將A、B兩個(gè)品牌的銷售利潤(rùn)y1、y2表示為投入資金x的函數(shù)關(guān)系式;
(2)該商場(chǎng)計(jì)劃投入5萬元經(jīng)銷該種商品,并全部投入A、B兩個(gè)品牌,問:怎樣分配這5萬元資金,才能使經(jīng)銷該種商品獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com