【題目】已知直線(xiàn)的方程為,點(diǎn)是拋物線(xiàn)上到直線(xiàn)距離最小的點(diǎn),點(diǎn)是拋物線(xiàn)上異于點(diǎn)的點(diǎn),直線(xiàn)與直線(xiàn)交于點(diǎn),過(guò)點(diǎn)與軸平行的直線(xiàn)與拋物線(xiàn)交于點(diǎn).
(Ⅰ)求點(diǎn)的坐標(biāo);
(Ⅱ)證明直線(xiàn)恒過(guò)定點(diǎn),并求這個(gè)定點(diǎn)的坐標(biāo).
【答案】(Ⅰ);(Ⅱ) 恒過(guò)定點(diǎn),證明見(jiàn)解析.
【解析】試題分析:(Ⅰ)到直線(xiàn)距離最小的點(diǎn),可根據(jù)點(diǎn)到直線(xiàn)距離公式,取最小值時(shí)的點(diǎn);也可根據(jù)幾何意義得為與直線(xiàn)平行且與拋物線(xiàn)相切的切點(diǎn):如根據(jù)點(diǎn)到直線(xiàn)的距離
得當(dāng)且僅當(dāng)時(shí)取最小值,(Ⅱ)解析幾何中定點(diǎn)問(wèn)題的解決方法,為以算代證,即先求出直線(xiàn)AB方程,根據(jù)恒等關(guān)系求定點(diǎn).先設(shè)點(diǎn) ,求出直線(xiàn)AP方程,與直線(xiàn)方程聯(lián)立,解出點(diǎn)縱坐標(biāo)為.即得點(diǎn)的坐標(biāo)為,再根據(jù)兩點(diǎn)式求出直線(xiàn)AB方程,最后根據(jù)方程對(duì)應(yīng)恒成立得定點(diǎn)
試題解析:(Ⅰ)設(shè)點(diǎn)的坐標(biāo)為,則,
所以,點(diǎn)到直線(xiàn)的距離
.
當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí)點(diǎn)坐標(biāo)為.………………………………4分
(Ⅱ)設(shè)點(diǎn)的坐標(biāo)為,顯然.
當(dāng)時(shí),點(diǎn)坐標(biāo)為,直線(xiàn)的方程為;
當(dāng)時(shí),直線(xiàn)的方程為,
化簡(jiǎn)得;
綜上,直線(xiàn)的方程為.
與直線(xiàn)的方程聯(lián)立,可得點(diǎn)的縱坐標(biāo)為.
因?yàn)椋?/span>軸,所以點(diǎn)的縱坐標(biāo)為.
因此,點(diǎn)的坐標(biāo)為.
當(dāng),即時(shí),直線(xiàn)的斜率.
所以直線(xiàn)的方程為,
整理得.
當(dāng),時(shí),上式對(duì)任意恒成立,
此時(shí),直線(xiàn)恒過(guò)定點(diǎn),
當(dāng)時(shí),直線(xiàn)的方程為,仍過(guò)定點(diǎn),
故符合題意的直線(xiàn)恒過(guò)定點(diǎn).……………………………………13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公差大于零的等差數(shù)列{an}的前n項(xiàng)和為Sn , 且滿(mǎn)足a3a4=117,a2+a5=22.
(1)求通項(xiàng)an;
(2)若數(shù)列{bn}滿(mǎn)足bn= ,是否存在非零實(shí)數(shù)c使得{bn}為等差數(shù)列?若存在,求出c的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=
(1)證明f(x)是奇函數(shù);
(2)判斷f(x)的單調(diào)性,并用定義證明
(3)求f(x)在[1,2]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為(),為上一點(diǎn),以為邊作等邊三角形,且、、三點(diǎn)按逆時(shí)針?lè)较蚺帕?
(Ⅰ)當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),求點(diǎn)運(yùn)動(dòng)軌跡的直角坐標(biāo)方程;
(Ⅱ)若曲線(xiàn): ,經(jīng)過(guò)伸縮變換得到曲線(xiàn),試判斷點(diǎn)的軌跡與曲線(xiàn)是否有交點(diǎn),如果有,請(qǐng)求出交點(diǎn)的直角坐標(biāo),沒(méi)有則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿(mǎn)足B∪C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙C經(jīng)過(guò)點(diǎn)、兩點(diǎn),且圓心C在直線(xiàn)上.
(1)求⊙C的方程;
(2)若直線(xiàn)與⊙C總有公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓的中心為原點(diǎn),長(zhǎng)軸在軸上,上頂點(diǎn)為,左,右焦點(diǎn)分別為,線(xiàn)段的中點(diǎn)分別為,且 是面積為4的直角三角形.
(1)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(2)過(guò)做直線(xiàn)交橢圓于兩點(diǎn),使,求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中,稱(chēng)一個(gè)正方體內(nèi)兩個(gè)互相垂直的內(nèi)切圓柱所圍成的立體為“牟合方蓋”,如圖(1)(2),劉徽未能求得牟合方蓋的體積,直言“欲陋形措意,懼失正理”,不得不說(shuō)“敢不闕疑,以俟能言者”.約200年后,祖沖之的兒子祖暅提出“冪勢(shì)既同,則積不容異”,后世稱(chēng)為祖暅原理,即:兩等高立體,若在每一等高處的截面積都相等,則兩立體體積相等.如圖(3)(4),祖暅利用八分之一正方體去掉八分之一牟合方蓋后的幾何體與長(zhǎng)寬高皆為八分之一正方體的邊長(zhǎng)的倒四棱錐“等冪等積”,計(jì)算出牟合方蓋的體積,據(jù)此可知,牟合方蓋的體積與其外切正方體的體積之比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是正四棱柱的一個(gè)截面,此截面與棱交于點(diǎn) , ,其中分別為棱上一點(diǎn).
(1)證明:平面平面;
(2)為線(xiàn)段上一點(diǎn),若四面體與四棱錐的體積相等,求的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com