已知實數(shù)x,y滿足,如果目標函數(shù)z=x-y的最小值是-1,那么此目標函數(shù)的最大值是( )
A.1
B.2
C.3
D.5
【答案】分析:由目標函數(shù)z=x-y的最小值為-1,我們可以畫出滿足條件 的可行域,根據(jù)目標函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標,然后根據(jù)分析列出一個含參數(shù)m的方程組,消參后即可得到m的取值,然后求出此目標函數(shù)的最大值即可.
解答:解:畫出x,y滿足的可行域如下圖:
可得直線y=2x-1與直線x+y=m的交點使目標函數(shù)z=x-y取得最小值,

解得 ,
代入x-y=-1得

當過點(4,1)時,目標函數(shù)z=x-y取得最大值,最大值為3
故選:C
點評:如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組),代入另一條直線方程,消去x,y后,即可求出參數(shù)的值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
x-y+2≥0
x+y≥0
x≤1
,則z=2x+y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x、y滿足
x≥1
y≥2
x+y≤4
,則u=
x+y
x
的取值范圍是
[2,4]
[2,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
x+y≤2
x-y≤2
0≤x≤1
,則z=2x-3y的最大值是
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
y2-x≤0
x+y≤2
,則2x+y的最小值為
-
1
8
-
1
8
,最大值為
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知實數(shù)x,y滿足|2x+y+1|≤|x+2y+2|,且|y|≤1,則z=2x+y的最大值為( 。

查看答案和解析>>

同步練習冊答案